首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记 α=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问: α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记 α=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问: α4能否由α1,α2,α3线性表出,说明理由.
admin
2016-07-22
30
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记
α=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问:
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4-1=3,且由对应齐次方程组的通解知,α
1
-α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/Gcw4777K
0
考研数学一
相关试题推荐
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________
设f(x)在[0,1]上有二阶连续导数,则下列说法正确的是()①若f’’(x)>0,则∫01f(x)dx>f(1/2)②若f’’(x)>0,则∫01f(x)dx<f(1/2)③若f’’(x)<0,则∫01f(x)dx>f(
设曲线y=ax2与y=lnx相切,两曲线及x轴所围图形为D求D绕y轴旋转一周所得旋转体的体积V
证明:方程xa=1nx(a<0)在(0,+∞)内有且仅有一个根.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
设集合A={北京,上海},B={南京,广州,深圳},求A×B与B×A
随机试题
《聊斋志异》的艺术成就。
西周以后,文献中频繁出现“皇天”、“上天”、“曼天”、“昊天”、“苍天”,表明一种信仰已广泛流传。这种信仰是()
破伤风治疗中,不正确的是尽早应用
烧伤休克的特点
1~8:某多层办公楼为现浇钢筋混凝土框架结构,抗震等级为二级,混凝土强度等级为C30,梁、柱纵向钢筋采用HRB335级钢筋,梁、柱箍筋采用HPB235级钢筋。其首层入口处雨篷的平面图与剖面图如图5-1所示。当雨篷梁(即支承雨篷的框架梁)按箍筋间
甲、乙、丙、丁均为外商投资企业。其中:甲、乙为有限责任公司;丙为上市的股份有限公司;丁为非上市的股份有限公司。下列有关上述企业相互之间合并后企业组织形式的表述中,不符合外商投资企业法律制度规定的是()。
下列关于法律责任的表述中,正确的是()。
3,30,29,12,()
关于配置管理的描述中,错误的是()。
What’sTom’stelephonenumber?
最新回复
(
0
)