首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
admin
2020-04-21
67
问题
求f(x,y,z)=2x+2y一z
2
+5在区域Ω:x
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
f(x,y,z)在有界闭区域Ω上连续,一定存在最大、最小值. 第一步,先求f(x,y,z)在Ω内的驻点. 由[*]=2→f(x,y,z)在Ω内无驻点,因此f(x,y,z)在Ω的最大、最小值都只能在Ω的边界上达到. 第二步,求f(x,y,z)在Ω的边界x
2
+y
2
+z
2
=2上的最大、最小值,即求f(x,y,z)在条件x
2
+y
2
+z
2
—2=0下的最大、最小值. 令F(x,y,z,λ)=2x+2y—z
2
+5+λ(x
2
+y
2
+z
2
—2),解方程组 [*] 由①,②→x=y,由③→x=0或λ=1.由x=y,z=0代入④→x=y=±1,z=0.当λ=1时由①,②,④也得x=y=—1,z=0.因此得驻点P
1
(一1,一1,0)与P
2
(1,1,0).计算得知f(P
1
)=1,f(P
2
)=9. 因此,f(x,y,z)在Ω的最大值为9,最小值为1.
解析
转载请注明原文地址:https://kaotiyun.com/show/H684777K
0
考研数学二
相关试题推荐
[2006年]设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解.(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2003年]若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=().
设A是m×n矩阵,B是n×m矩阵,则().
[2012年]已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2.(Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
[2009年]设y=y(x)是区间(一π,π)内过点(-π/√2,π/√2)的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0,求函数y(x)的表达式.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y′(0)=3/2的解.
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
[2015年]设函数y=y(x)是微分方程y"+y′一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=________.
随机试题
单模光纤是()光纤
治疗肝肾亏虚,胎动不安,腰膝酸软,应选用何药
A.子宫圆韧带B.子宫阔韧带C.子宫主韧带D.子宫骶韧带E.盆底肌防止子宫两侧移位的是
最常见的代收代缴费用包括房产税和保险费的水、电、煤气等资源的使用费。()
[2005年,第103题]图7.2-3所示电路,μ=141sin(314t-30°)V,i=14.1sin(314t一60°)A,求有功功率P=()。
评标委员会以标底衡量报价得分时,首先应( )。
2013年刘某为自己投保人寿保险,并指定其妻宋某为受益人。2015年刘某实施抢劫时被他人捅死。事后,宋某请求保险公司支付保险金遭到拒绝。经查,刘某已缴纳3年保险费。下列关于保险公司是否承担支付保险金责任的表述中,符合保险法律制度规定的是()。
甲公司为增值税一般纳税人,销售货物适用的增值税税率为16%,2019年5月1日,应收账款明细账借方余额为1650万元,贷方余额为300万元;预收账款明细账借方余额240万元,贷方余额825万元,5月发生与应收款项有关的经济业务如下:(1)2日,收
认知方式可分为场依存性和_____。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
最新回复
(
0
)