首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设A为三阶矩阵,将A的第2行加到第1行得到B,再将B的第1列的一1倍加到第2列得到C.记P=,则( ).
[2006年] 设A为三阶矩阵,将A的第2行加到第1行得到B,再将B的第1列的一1倍加到第2列得到C.记P=,则( ).
admin
2019-05-10
32
问题
[2006年] 设A为三阶矩阵,将A的第2行加到第1行得到B,再将B的第1列的一1倍加到第2列得到C.记P=
,则( ).
选项
A、C=P
-1
AP
B、C=PAP
-1
C、C=P
T
AP
D、C=PAP
T
答案
B
解析
先用初等矩阵P表示初等变换,然后用命题2.2.5.1确定选项.
由P=
得到
将矩阵A的第2行加到第1行,相当于用初等矩阵P左乘A,即PA=B,将矩阵B的第1列的一1倍加到第2列相当于用P
-1
右乘B,即BP
-1
=C,亦即B=CP,故PA=CP.因而C=PAP
-1
.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/WjV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
证明:用二重积分证明
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设A,B都是n阶可逆矩阵,则().
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
随机试题
Thebirdfluvirusismutatingandbecomingmoredangeroustomammals,accordingtoresearchers.Thediscoveryreinforcesfears
数字图像的最大特点是
根据五行相生规律确立的治则有错误的一项是
A.益气活血,化瘀通络B.平肝息风,化痰祛瘀通络C.息风清火,豁痰开窍,通腑泄热D.化痰息风,宣郁开窍E.平肝潜阳,滋养肝肾中经络的治法是
监理单位对其验收合格项目的施工质量负()。
根据中国银监会的规定,单个信托计划的自然人人数不得超过(),但单笔委托金额在()以上的自然人投资者和合格的机构投资者数量不受限制。
确定建立保险储备量时的再订货点,需要考虑的因素有()。
村民吴某称自己上初中的女儿在学校被侮辱,从学校的三楼跳下,小腿等多处骨折,目前在医院处于暂时昏迷状态,由吴某的家人负责照料。吴某到学校找到女儿的班主任,班主任称自己也是刚刚得知。吴某情急之下,纠集数十位情绪激动的亲朋好友来到镇政府门口,欲为女儿讨要说法。
根据以下资料。回答下列问题题。2012年,长春市汽车工业完成产值4888.5亿元,比上年增长16.5%;完成工业增加值1104.7亿元。2012年1-11月,汽车工业实现主营业务收入4954.2亿元,比上年同期增长11.6%;实现利润总
(2015年)若级数条件收敛,则与x=3依次为幂级数的
最新回复
(
0
)