首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(0,0)的某邻域U内连续,且(常数a>0),则( )
设f(x,y)在点(0,0)的某邻域U内连续,且(常数a>0),则( )
admin
2021-04-07
33
问题
设f(x,y)在点(0,0)的某邻域U内连续,且
(常数a>0),则( )
选项
A、f(0,0)是f(x,y)的极小值
B、f(0,0)是f(x,y)的极大值
C、f(0,0)不是f(x,y)的极值
D、f(0,0)是否为f(x,y)的极值由a的值决定
答案
D
解析
由极限与无穷小的关系,得
f(x,y)-xy=(a+α)(x
2
+y
2
),
其中
。
①设a>1/2,令b=a-1/2>0,于是
f(x,y)=xy+(b+1/2+a)(x
2
+y
2
)
=(x+y)
2
+b(x
2
+y
2
)+a(x
2
+y
2
),
由于f(x,y)在点(0,0)处连续,所以
当x
2
+y
2
>0且足够小时,a<b,f(x,y)>0,所以f(0,0)是f(x,y)的极小值,
②设,0<a<1/2,令b=a-1/2,于是一1/2<b=a-1/2<0,
f(x,y)=1/2(x+y)
2
+(b+a)(x
2
+y
2
),
沿直线y=-x,且点(x,y)属于点(0,0)的足够小的去心邻域
,使∣a∣<∣b∣,于是
f(x,y)<0
若沿直线y=x,且点(x,y)∈U,注意此时必有z≠0,故
f(x,y)=2x
2
(1+b+a)>0,
所以点(0,0)不是f(x,y)的极值点,选D。
转载请注明原文地址:https://kaotiyun.com/show/HEy4777K
0
考研数学二
相关试题推荐
设4阶方阵A=[αγ2γ3γ4],B=[βγ2γ3γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=________.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
已知f’(ex)=xe-x,且f(1)=0,则f(x)=__________。
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______
设三阶矩阵A=,三维列向量α=(a,1,1)T.已知Aα与α线性相关,则a=________
设随机变量X在区间[a,b](a>0)上服从均匀分布,且P{0<x<3}=,则P{-1<X<5}=__________。
r=a(1+cosθ)在点(r,θ)=(2a,0),,(0,π)处的切线方程分别为_______.
设f(χ)=∫-1χ(1-|t|)dt(χ≥-1),求曲线y=f(χ)与χ轴所围图形面积=________.
极限=__________.
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)