首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列二次型中是正定二次型的是( )
下列二次型中是正定二次型的是( )
admin
2019-08-12
74
问题
下列二次型中是正定二次型的是( )
选项
A、f
1
=(x
1
一x
2
)
2
+(x
2
一x
3
)
2
+(x
3
一x
1
)
2
。
B、f
2
=(x
1
+x
2
)
2
+(x
2
一x
3
)
2
+(x
3
+x
1
)
2
。
C、f
3
=(x
1
+x
2
)
2
+(x
2
+x
3
)
2
+(x
3
一x
4
)
2
+(x
4
一x
1
)
2
。
D、f
4
=(x
2
+x
2
)
2
+(x
2
+x
3
)
2
+(x
2
+x
4
)
2
+(x
4
一x
1
)
2
。
答案
D
解析
f=x
T
Ax正定→对任意的x≠0,均有x
T
Ax>0;反之,若存在x≠0,使得f=x
T
Ax≤0则f或A不正定。
A选项因f
1
(1,1,1)=0,故不正定。
B选项因f
2
(一1,1,1)=0,故不正定。
C选项因f
3
(1,一1,1,1)=0,故不正定。由排除法,故选D。
转载请注明原文地址:https://kaotiyun.com/show/6wN4777K
0
考研数学二
相关试题推荐
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0.δ)(δ>0)内可导,且,则f+’(0)存在
(10年)函数y=In(1—2x)在x=0处的n阶导数y(n)(0)=________.
(09年)设y=y(x)是由方程xy+ey=x+1确定的隐函数,则
(08年)曲线sin(xy)+ln(y—x)=x在点(0,1)处的切线方程是_______.
(07年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
(01年)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x).且f(0)=一0,g(0)=2,求
(99年)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
(1999年)设矩阵矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵.求矩阵X.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
试述语言文字的文化特征。
(2017年4月论述第43题)试述领导如何提高授权艺术。
手外伤时。检查桡动脉、尺动脉通畅和相互吻合程度的试验是
患儿,女性,5岁。头痛、呕吐,步行不稳3个月。查体:神志清楚,精神差,双侧视盘水肿。患儿最可能的诊断是
洛美沙星结构如下: 对该药进行人体生物利用度研究,采用静脉注射与口服给药方式,给药剂量均为400mg,静脉给药和口服给药的AUC分别为401.Lg·h/ml和36μg·h/ml。洛美沙星是喹诺酮母核8位引入氟,构效分析,8位引入氟后,使洛
Hp的毒力因子中,不能通过引起机体的免疫反应造成胃黏膜损伤的是()。
某学生既想参加演讲比赛,锻炼自己,又害怕讲不好,被人讥笑。这时他面临的心理冲突是()。
用于行政管理的“命令(令)”其发布权限属于地方各级人民政府。()
下列工具中不能用作安全评估的是()。
A、Theyweremainlyonherleftleg.B、Theyweremainlyonherrightleg.C、Theyweremainlyonherfingers.D、Theyweremainlyo
最新回复
(
0
)