首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,Xn1与Y1,…,Yn2为分别来自总体N(μ1,σ2)和N(μ2,σ2)的简单随机样本,样本方差分别为,令Z=aS12+bS22,其中a与b为常数,若统计量Z为σ2的无偏估计量,求a与b满足的条件,并在此条件下,当a与b取何值时,统计量为最有效.
设X1,Xn1与Y1,…,Yn2为分别来自总体N(μ1,σ2)和N(μ2,σ2)的简单随机样本,样本方差分别为,令Z=aS12+bS22,其中a与b为常数,若统计量Z为σ2的无偏估计量,求a与b满足的条件,并在此条件下,当a与b取何值时,统计量为最有效.
admin
2014-04-23
70
问题
设X
1
,X
n
1
与Y
1
,…,Y
n
2
为分别来自总体N(μ
1
,σ
2
)和N(μ
2
,σ
2
)的简单随机样本,样本方差分别为
,令Z=aS
1
2
+bS
2
2
,其中a与b为常数,若统计量Z为σ
2
的无偏估计量,求a与b满足的条件,并在此条件下,当a与b取何值时,统计量为最有效.
选项
答案
若Z=aS
2
2
+bS
2
2
为σ
2
的无偏估计量,则EZ=E(aS
2
2
+bS
2
2
)=aES
2
2
+bES
2
2
=(a+b)σ
2
=σ
2
. 解得a+b=1. 令b=1一a,则Z=aS
1
2
+(1一a)S
2
2
为σ
2
的无偏估计量, 其中0<a<1,于是DZ=D[aS
1
2
+(1a)S
2
2
]=a
2
DS
1
2
+(1一a)
2
DS
2
2
. 令[*] 解得[*] 另一方面,[*] 所以当[*]时,统计量Z的方差最小,即为最有效.
解析
转载请注明原文地址:https://kaotiyun.com/show/HV54777K
0
考研数学一
相关试题推荐
求
设f(x)为非负连续函数,且,求f(x)在[0,2]上的平均值.
设函数f(x)处处可导,且(k>0为常数),又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设f(x),g(x)在点x=0的某邻域内连续,且当x→0时f(x)与g(x)为等价无穷小量,则当x→0时的()
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在ξ∈(a,b),使得;
设4阶矩阵A=(α1,α2,α3,α4),且非齐次线性方程组AX=b的通解为令矩阵B=(α1,α2,α3,b+α4),求方程组BX=2α1-α2的通解.
设α为n维列向量,且A=E-ααT.(Ⅰ)证明:A2=A的充分必要条件是α为单位向量;(Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解;(Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
设曲线L:y=f(x)位于第一象限,且经过点M0(1,3),P(x,y)为曲线L上的任一点,在[0,x]上,以f(x)为高的矩形面积与上以L为曲边的曲边梯形面积的三倍之差等于-x2.(Ⅰ)求f(x);(Ⅱ)求y=f(x)与x轴及x=2围成的区域绕x=3
随机试题
福利国家的最初尝试起始于()
失笑散的功用是
喹诺酮类药物的抗菌机制是()。
患者上前牙龋充填后三天出现自发痛,不敢咬合。查:充填体,叩(++),松动I度,牙龈轻红肿,冷热测无反应,该患牙三天前处理中的问题最可能是
诊断自主性功能亢进性甲状腺腺瘤最佳的甲状腺检查是
监理工程师对施工图审核的重点是( )。
《危险性较大的分部分项工程安全管理办法》规定,施工单位应当在危险性较大的分部分项工程施工前编制专项方案。下述选项中属于专项方案施工安全保证措施的是()。
某企业收同货款25000元存入银行,记账凭证的记录为:“借:银行存款25800,贷:其他应收款25800”,并已登记入账。更正时需要做的会计分录包括()
城市社区与农村社区的主要区别。(中山大学2011年研)
根据婚姻法的明确规定,下列哪些人之间禁止结婚?()
最新回复
(
0
)