首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
admin
2021-02-25
59
问题
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
选项
答案
设x
0
,x∈(a,b),则f(x)在以x
0
,x为端点的区间上满足拉格朗日中值定理条件,因此有 f(x)-f(x
0
)=f’(ξ)(x-x
0
),其中ξ介于x
0
与x之间. 因为f’(x)在(a,b)内有界,即存在M
1
>0,使|f’(x)|<M
1
,x∈(a,b),所以 [*] 即f(x)在(a,b)内有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/NK84777K
0
考研数学二
相关试题推荐
(11年)设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记a为曲线l在点(x,y)处切线的倾角,若求y(x)的表达式.
(2006年试题,16)求不定积分
设函数S(x)=∫0x|cost|dt。(Ⅰ)当n为正整数,且nπ≤x<(n+1)π时,证明2n≤S(x)<2(n+1);(Ⅱ)求S(x)/x。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
微分方程xy’=yln的通解为_________。
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分=______。
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
方程y’’一3y’+2y=ex+1+excos2x的特解形式为()
随机试题
患者女,53岁,右耳渐进性听力下降伴耳鸣1年,患者自耳鸣以来长期失眠,不伴耳痛,否认中耳炎病史,近半年月经不规律。查体双外耳道干燥通畅,鼓膜完整光锥可见。纯音测听结果示左耳平均听阈15dB,右耳自4000Hz开始高频下降,高频平均听阈50dB,为感音神经性
下列适于用冲击式粉碎机粉碎的物料是
有关铁的吸收的叙述,错误的是
女,7岁。食冷饮时左后牙感到酸痛2周,无自发痛史,检查发现颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩(-)首次就诊时,对该患牙应做的处理为
A.氨曲南B.克拉维酸C.哌拉西林D.亚胺培南E.他唑巴坦属于青霉烷砜类抗生素的是()。
下列各项中,符合增值税专用发票开具时限规定的是( )。
《马斯特里赫特条约》
为什么是政府,而不是企业或大学为超级计算机网络的实现出资?这是因为仅仅对超级计算机网络庞大的数据管理能力来说,就有一系列被抨击的问题。没有任何一个企业或大学自身具有购买整个网络的机器的足够财力,并且没有企业或大学会在不存在配套建设整个网络的机制下为网络的某
DeconstructionInnovationsinlanguagearenevercompletelynew.Whenthewordsusedforfamiliarthingschange,orwordsfo
IthasbeenawretchedfewweeksforAmerica’scelebritybosses.AIG’sMauriceGreenberghasbeendramaticallyoustedfromthef
最新回复
(
0
)