首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
admin
2021-02-25
31
问题
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
选项
答案
令F(x)=f(x+a)-f(x).因为f(x)在[0,1]上非负连续,f(x+a)应在[-a,1-a]上非负连续,于是F(x) 在[0,1-a]上连续.且 F(0)=f(a)-f(0)=f(a)≥0, F(1-a)=f(1)-f(1-a)=-f(1-a)≤0. (1)若F(0)=0,则ξ=0即为所求; (2)若F(1-a)=0,则ξ=1-a即为所求; (3)若F(0)≠0且F(1-a)≠0,则由零点定理,必存在[*],使得F(ξ)=0,即f(ξ+a)=f(ξ). 综上所述,存在ξ∈[0,1),使f(ξ+a)=f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/QO84777K
0
考研数学二
相关试题推荐
设函数g(x)可微,h(x)=e1+g(x),h’(1)=l,g’(1)=2,则g(1)等于().
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
曲线y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕X轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求S(t)/V(t)的值;
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
极限().
微分方程y’’一λ2y=eλx+e-λx(λ>0)的特解形式为()
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
微分方程(1一x2)y—xy’=0满足初值条件y(1)=1的特解是__________.
随机试题
根据以下资料,回答以下问题。2008年世界稻谷总产量68501.3万吨,比2000年增长14.3%;小麦总产量68994.6万吨,比2000年增长17.8%;玉米总产量82271.0万吨,比2000年增长39.1%:大豆总产量23095.3万吨,
根据当事人的立足点和出发点所设立的系统称为
根据罗伯特.卡茨的研究,管理者要具备三类技能:概念技能、技术技能和______。
试述影响我国货币需求的宏观因素。
根据我国《民事诉讼法》的规定,下列不可以作为证人的是()。
桑代克提出的三条基本学习规律是什么?
甲、乙、丙、丁每人只会编程、插花、绘画、书法四种技能中的两种,其中有一种技能只有一个入会。并且:(1)乙不会插花;(2)甲和丙会的技能不重复,乙和甲、丙各有一门相同的技能;(3)甲会书法,丁不会书法,甲和丁有相同的技能;(4)乙和丁中只有一人会插花
《威尼斯商人》是莎士比亚早期作品。剧本通过夏洛克与威尼斯商人安东尼奥的矛盾冲突,揭露高利贷者的残暴贪婪。安东尼奥为帮助他的朋友巴萨尼奥向鲍西娅求婚,借了夏洛克的三千块钱。夏洛克因与安东尼奥有宿怨,迫使他订了一个借约,如果不能在规定的日期和地点还钱,就要在欠
某只股票要求的收益率为15%,收益率的标准差为25%,与市场投资组合收益率的相关系数是0.2,市场投资组合要求的收益率是14%,市场组合的标准差是4%,假设处于市场均衡状态,则市场风险价格和该股票的贝塔系数分别为()。
二进制数10110010100l转换成十六进制数是
最新回复
(
0
)