首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )
admin
2019-04-09
55
问题
在下列微分方程中,以y=C
1
e
x
+C
2
cos2x+C
3
sin2x(C
1
,C
2
,C
3
为任意常数)为通解的是( )
选项
A、y"+y"—4y’—4y=0
B、y"’+y"+4y’+4y=0
C、y"’—y"—4y’+4y=0
D、y"’—y"+4y’—4y=0
答案
D
解析
已知题设的微分方程的通解中含有e
x
、cos2x、sin2x,可知齐次线性方程所对应的特征方程的特征根为r=1,r=+2i,所以特征方程为
(r—1)(r—2i)(r+2i)=0,即 r
3
一r
2
+4r—4=0。
因此根据微分方程和对应特征方程的关系,可知所求微分方程为
y"一y"+4y’—4y=0。
转载请注明原文地址:https://kaotiyun.com/show/HdP4777K
0
考研数学三
相关试题推荐
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx如也是以T为周期的连续函数,则b=______.
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
设α为n维非零列向量,A=E-(1)证明:A可逆并求A-1;(2)证明:α为矩阵A的特征向量.
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。(Ⅰ)写出二维随机变量(X,Y)的分布律;(Ⅱ)求E(X)。
设A、B为两个随机事件,且BA,则下列式子正确的是()
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)=P(A|=______.
随机试题
检测动脉导管未闭患者主动脉向肺动脉的分流血流,下述哪一种方法是错误的
三栏式现金日记账的日期栏,系指登账的日期,可以与记账凭证及现金实际收付日期不一致。()
A.赖氨酸注射液B.复方氨基酸注射液(18AA)C.复方氨基酸注射液(9AA)D.丙氨酰谷氨酰胺注射液E.复方氨基酸注射液(6AA)治疗肝性脑病、慢性迁延性肝炎、慢性活动性肝炎引起的氨基酸代谢紊乱的药物是
中央广播电视总台无锡影视基地的三国城建筑工巧华丽,水浒城雄浑刚劲。()
Thiswasgiventousasapresentonthe______ofourmarriage.
关于职能组织结构的说法,错误的是()。
2000年1月,A通讯有限公司(以下简称“A公司”)、B实业股份公司(以下简称“B公司”)、C科技发展有限公司(以下简称“C公司”)、D国际投资公司(以下简称“D公司”)与自然人田某协商,准备共同出资设立一家证券公司,公司名称定为E证券经纪有限公司,主要从
关于股票流动性,下列说法正确的有()。Ⅰ.通常大盘股流动性强于小盘股Ⅱ.通常上市公司股票流动性强于非上市公司股票Ⅲ.上市公司股票具有相同的流动性Ⅳ.报价的价差越小,股票流动性越弱
根据刑事诉讼法律制度的规定,下列各项中,属于未追究刑事责任应不予追究;已经追究刑事责任,应当撤销案件,或者不起诉,或者终止审理,或者宣告无罪的有()。
下列对HiperLAN/2无线局域网标准的描述中,错误的是
最新回复
(
0
)