首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知幂级数在x>0时发散,且在x=0时收敛,则
已知幂级数在x>0时发散,且在x=0时收敛,则
admin
2020-03-15
86
问题
已知幂级数
在x>0时发散,且在x=0时收敛,则
选项
A、a=1.
B、a=一1.
C、一1≤a<1.
D、一1<a≤1.
答案
B
解析
由
知该幂级数的收敛半径为1,从而得其收敛区间为
|x一a|<1,即a一1<x<a+1.
又当x一a=1即x=a+1时,原级数为
收敛;当x—a=一1即x=a一1时,
原级数为
发散.因此,原级数的收敛域为a一1<x≤n+1.
于是,由题设x=0时级数收敛,x>0时级数发散,可知x=0是其收敛区间的一个端点,且位于收敛域内.因此只有a+1=0即a=一1.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/HgD4777K
0
考研数学三
相关试题推荐
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
已知f(x,y)=,则()
设A,B,C是三个相互独立的随机事件,且0
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求a,b的值;
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果Yn=,则当常数c=__________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布。
随机试题
从主要职责来看,()既要负责实施旅游接待计划,又要做好联络和组织协调工作,还要进行旅游宣传和调研。
制动失灵后,驾驶人应立即寻找并冲入紧急避险车道;停车后,拉紧驻车制动器,以防溜动发生二次险情。
结节性多动脉炎的血管壁坏死属于
具有清热泻火、生津止渴、除烦止呕功效的药物是
关于体温与发热A、细菌感染B、病毒感染C、化脓性感染或疟疾D、肺炎E、伤寒发热有间歇期,表现有间歇性发作的寒战、高热,继之大汗,则可能是
近年来各地的房产公司如雨后春笋般成长起来,市场竞争异常激烈,而房产促销策略作为房产营销中不可少的一环,成为个公司开拓市场,树立产品、企业形象,吸引购买者的有力机制。请回答以下问题:常见的房地产非人员促销方式有()。
假设一个序列l,2,3,…,n依次进栈,如果出栈的第一个元素是n,那么第i(1≤i≤n)个出栈的元素是()。
儿童可以同时考虑一个问题的多个维度,且能够协调多个维度之间的关系,最终达到守恒。按照皮亚杰的认知发展阶段理论,该儿童处于()
若源程序文件abc.cpp中只有一个函数,该函数的名称为【】。
A、earlySundayB、earlyMondayC、lateSundayD、lateMondayC
最新回复
(
0
)