首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:r(A)=r(ATA).
证明:r(A)=r(ATA).
admin
2021-11-25
40
问题
证明:r(A)=r(A
T
A).
选项
答案
只需证明AX=0与A
T
AX=0为同解方程组即可。 若AX
0
=0,则A
T
AX
0
=0 反之,若A
T
AX
0
=0,则X
0
T
A
T
AX
0
=0→(AX
0
)
T
(AX
0
)=0→AX
0
=0 所以AX=0与A
T
AX
0
=0为同解方程组,从而r(A)=r(A
T
A).
解析
转载请注明原文地址:https://kaotiyun.com/show/Hpy4777K
0
考研数学二
相关试题推荐
______.
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x))在[a,b]上可导;④f(x)在[a,b]上存在原函数.以P=>Q表示由性质P可推出性质Q,则有()
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f(x).
设f(x)=kx-arctanx(0<k<1)。证明:存在唯一的x0∈(0,+∞),使f(x0)=0。
设A是3阶实对称矩阵,λ1,λ2,λ3是A的3个特征值,且满足α≥λ1≥λ2≥λ3≥b,若A一μE是正定矩阵,则参数μ应满足()
设A,B为n阶矩阵,下列命题成立的是().
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:(Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A);(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵;(Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
设A是m×s矩阵,B是s×n矩阵,则线性方程组ABx=0和Bx=0是同解方程组的一个充分条件是()
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为().
已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E为3阶单位矩阵.证明:矩阵A-2E可逆;
随机试题
在会计科目表设计中,不需要解决的问题是()
表面活性剂在溶液中开始形成胶团时的浓度称( )。
拟建的地铁线路从下方穿越正在运行的另一条地铁,上下两条地铁间垂直净距2.8m,为粉土地层,无地下水影响。问下列哪个选项的施工方法是适用的?
依据《大气污染防治法》,与工程建设相关的具体规定包括()。
项目后评价主要内容包括()。
新技术应用方案的技术分析中,下列不属于反映技术条件指标的是()。
与下列()最接近。
二战后资本主义经济发展与19世纪末的最大不同点是()。
商品的价值
WherewasthedestinationofTitanic?
最新回复
(
0
)