首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA; (Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA; (Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
admin
2020-02-28
56
问题
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA;
(Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
选项
答案
(I)因为A有n个互不相同的非零特征值λ=1,2,…,n,|A |=n!≠0,故A为可逆矩阵,从而有|λE-AB|=|A(λA
-1
)-B|=|A(λE-BA)A
-1
|=|A||λE-BA||A
-1
|=|λE-BA|, 即AB和BA有相同的特征多项式,故有相同的特征值. 又若取可逆矩阵P=A,则有P
-1
ABP=A
-1
ABA=BA,故有AB~BA. (Ⅱ)若AB有特征值λ=0,则|AB|=|A||B|=|B||A|=|BA|=0.故BA也有特征值λ=0. 若AB有特征值λ≠0,按定义,有ABξ=λξ(ξ≠0), 其中ξ是AB的对应特征值λ的特征向量. 用B左乘上式两端,得BABξ=λBξ. 即 BA(Bξ)=λ(Bξ), 其中Bξ≠0(若Bξ=0,则有ABξ=λξ=0.因ξ≠0,得λ=0,这和λ≠0矛盾).BA也有非零特征值λ,对应的特征向量为Bξ. 故AB和BA有相同的特征值. 一般AB与BA不相似.例如, [*] 故AB与BA不相似.
解析
转载请注明原文地址:https://kaotiyun.com/show/kxA4777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞]连续,且证明至少存在ξ∈(0,+∞),使得f(ξ)+ξ=0。
证明:,其中a>0为常数.
二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3.①求f(χ1,χ2,χ3)的矩阵的特征值.②如果f(χ1,χ2,χ3)的规范形为y12+y22,求a.
已知随机变量X的概率分布为P{X=k}=,k=0,1,2,…,求E(X2)和D(X).
设A*为3阶方阵A的伴随矩阵,|A|=,求|(3A)-1-2A*|的值.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
设f(x,y)与φ(x,y)均为可微函数,且φx(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在
随机试题
如果摄入的蛋白质过少,会使生长发育迟缓,机体抵抗力降低。()
有人根据某种沙门菌食物中毒患者164例的潜伏期资料,用百分位数法求得潜伏期的单侧95%上限为57.8小时,其含义是
关于新生儿用药下列错误的是()。
患者,女性,32岁。妇科检查发现子宫后倾。若该女性孕34周时发生胎膜早破,为防止脐带脱垂,应采用
某城市规划中心为了重新规划本市的居民区,制订了一整套规划方案。由于居住区的规划是一项综合性较强的工作,故需要考虑的因素很多,如使用要求、卫生标准、安全程度等,该城市规划中心对住宅建筑及居住区道路绿地等公共设施的规划布置进行全面系统地统计,为居民创造一个生活
反洗钱法的主要内容包括()。
A注册会计师是XYZ上市公司2005年度会计报表审计的外勤审计负责人,在审计过程中,需对负责关联方审计的助理人员提出的相关问题予以解答。请代为做出正确的专业判断。
枪:子弹
命令??的作用是()。
Theamazingsuccessofhumansasa【C1】______istheresultoftheevolutionarydevelopmentofourbrainswhichhasled,amongoth
最新回复
(
0
)