首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA; (Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA; (Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
admin
2020-02-28
74
问题
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA;
(Ⅱ)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请问是否必有AB~BA?说明理由.
选项
答案
(I)因为A有n个互不相同的非零特征值λ=1,2,…,n,|A |=n!≠0,故A为可逆矩阵,从而有|λE-AB|=|A(λA
-1
)-B|=|A(λE-BA)A
-1
|=|A||λE-BA||A
-1
|=|λE-BA|, 即AB和BA有相同的特征多项式,故有相同的特征值. 又若取可逆矩阵P=A,则有P
-1
ABP=A
-1
ABA=BA,故有AB~BA. (Ⅱ)若AB有特征值λ=0,则|AB|=|A||B|=|B||A|=|BA|=0.故BA也有特征值λ=0. 若AB有特征值λ≠0,按定义,有ABξ=λξ(ξ≠0), 其中ξ是AB的对应特征值λ的特征向量. 用B左乘上式两端,得BABξ=λBξ. 即 BA(Bξ)=λ(Bξ), 其中Bξ≠0(若Bξ=0,则有ABξ=λξ=0.因ξ≠0,得λ=0,这和λ≠0矛盾).BA也有非零特征值λ,对应的特征向量为Bξ. 故AB和BA有相同的特征值. 一般AB与BA不相似.例如, [*] 故AB与BA不相似.
解析
转载请注明原文地址:https://kaotiyun.com/show/kxA4777K
0
考研数学二
相关试题推荐
设f(χ)=,求f(χ)的间断,并进行分类.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设f(x)在闭区间[1,2]上可导,证明:ξ∈(1,2),使f(2)一2f(1)=ξf’(ξ)一f(ξ).
已知随机变量X的概率分布为P{X=k}=,k=0,1,2,…,求E(X2)和D(X).
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.求A的全部特征值;
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
设f(u)为连续函数,D是由y=1,x2一y2=1及y=0所围成的平面闭区域,则
[2008年]求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
随机试题
金属材料的电阻率越大,其导电性越好。
相对数主要包括
如下哪项是类风湿性关节炎的发病年龄高峰
《工业项目可行性研究报告质量评价标准》中,属于生态环境影响论证情况综合评价的有()。
下列各项中可以作为城市维护建设税计税依据的是()。
下列有关表述中,不正确的是()。
腰围男性>94cm,女性>80cm,可诊断为向心性肥胖。()
为庆祝某市建市30周年,该市政府要求市政府办公室做好有关工作。为此,市政府办公室以自己的名义发布了有关市容卫生、文明礼貌和清理整顿秩序的通告,要求全市各行各业各单位和全体市民切实遵守执行。问题:该通告行为合法吗?为什么?
设则有
下图中v0至v2的最短路径长度为(57)。
最新回复
(
0
)