首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式.
admin
2020-03-16
47
问题
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式.
选项
答案
旋转体的体积公式 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Hs84777K
0
考研数学二
相关试题推荐
在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).
证明:
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:I=(r,θ)dr,其中F(r,θ)=fFcosθ,rsinθ)r.
设f(x)在[0,+∞)上连续,单调不减且f(0)≥0,试证明函数F(x)=在[0,+∞)上连续且单凋不减(其中n>0).
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0;
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=E.证明:B的列向量组线性无关.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求常数a;
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
求曲线x3一xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离。
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
随机试题
被告人王某故意杀人案经某市中级法院审理,认为案件事实清楚,证据确实、充分。请根据下列条件,回答下列题。(2010—卷二—95~97,任)如王某被并处没收个人财产,关于本案财产刑的执行及赔偿、债务偿还,下列说法正确的是:
简述流动比率的缺点。
Youmustaccustomyourselftobemoreatyour______whenyouarewithpeople.
关于前列腺癌的诊断,下列哪项最准确
工程网络计划资源优化的目的之一是为了寻求( )。
多血质的人较难形成()。
一排6张椅子上坐3人,每2人之间至少有一张空椅子,求共有多少种不同的坐法?
在下列犯罪形态中,适用“从一重处断”原则予以论处的是()。
PerhapslikemostAmericansyouhavesomeextrapoundstoshed.Youmayevenhavetriedafad(时尚)dietortwo,butfoundyourse
BeautyandBodyImageintheMediaA)Imagesoffemalebodiesareeverywhere.Women—andtheirbodyparts—selleverythingfromfoo
最新回复
(
0
)