首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有
设A,B为满足AB=O的任意两个非零矩阵,则必有
admin
2019-05-06
38
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有
选项
A、A的列向量维线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
设A按列分块为A=[α
1
α
2
… α
n
],由B≠o知至少有一列非零,设B的第j列(b
1j
,b
2j
,…,b
nj
)
T
≠O,则AB的第j列为
[α
1
α
2
… α
n
]
=O,
即 b
1j
α
1
+b
2j
α
2
+…+b
nj
α
n
=0,
因为常数b
1j
,b
2j
,…,b
nj
不全为零,故由上式知A的列向量组线性相关,再由AB=O取转置得B
T
A
T
=O,利用已证的结果可知B
T
的列向量组——即B的行向量组线性相关,故(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/Ht04777K
0
考研数学一
相关试题推荐
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为π/3[s2f(a)-f(1)].若f(1)=1/2,求:f(x)的极值.
累次积分∫0π/2dθ∫0cosθrf(rcosθ,rsinθ)dr等于().
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=Xm+k.求:D(Y),D(Z);
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:D(Yi);
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:第三次才取得次品;
设y(χ)是方程y(4)-y″′+y〞-y′=0的解且当χ→0时y(χ)是χ的3阶无穷小,求y(χ).
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
(2010年)极限
随机试题
我国公民在我国领域之外犯我国刑法规定之罪的,原则上适用我国刑法,但按照我国刑法规定,可以不予追究的是()
简述全球价格战略的种类。
根据抗原抗体反应的特点,以下哪种说法是正确的
患者,男,10岁,有性早熟的临床表现,松果体区及鞍上见直径1.5~2.5cm病灶,为等T1等T2,注射Cd-DTPA后病灶明显强化该病变可能为
需摄取腕关节尺偏位——腕部外展正位的是
在工资系统中,通过自动转账生成机制凭证,实现与账务系统的数据传递。()
根据公司法律制度的规定,公司可以设立子公司,子公司()。
阅读下面材料,回答127~130题。材料一:中国古代思想家说:“夫君者舟也,庶人者水也,水所以载舟,亦所以覆舟。”“乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。乐以天下,忧以天下,然而不王者,未之有也。”材料二:十六大政治报告指出:
一、注意事项1.《申论》考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,然后按“申论要求”依次作答。二、给定资料1.保护农
下列关于数据库三级模式结构的叙述中,哪一个是不正确的?
最新回复
(
0
)