首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角
admin
2018-11-20
71
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,
a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i一1个分量都是0,B的第j个列向量的后面n—j个分量都是0,而i一1+n—j=n+(i—j一1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/HwW4777K
0
考研数学三
相关试题推荐
若矩阵A=,B是三阶非零矩阵,满足AB=0,则t=________.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|=________.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设相似于对角阵,求:A100.
设A,B满足A*BA=2BA一8E,且A=,求B.
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=0.
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
设A是三阶实对称矩阵,且A2+2A=0,r(A)=2.当k为何值时,A+kE为正定矩阵?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
随机试题
对于腮腺区肿物,哪种检查是不正确的
患者,女性,20岁,8天前因受凉后出现体温升高,6天前出现咳嗽、黄痰。入院查体:体温39.8℃,白细胞12×109/L,中性粒细胞89%,可闻支气管呼吸音和少许吸气相细湿啰音,心脏和腹部查体无异常。若患者出现耐药肺炎链球菌,可作为替代药物的是()。
下列选项不属于单相流洁净室的送风形式的是()。
除专用合同条款另有约定外,发包人应在开工后28天内预付安全文明施工费总额的(),其余部分与进度款同期支付。
学习与教学的要素包括学生、教师、教学内容、教学媒体和______。
在冬季,人们往往容易鼻子出血,因而常常在房间的地上洒一些水,或在室内放一盆清水、挂一些湿毛巾等。对以上做法最合理的解释是()。
_______是德国同时也是欧洲文学史上第一部市民悲剧,德国市民悲剧的代表作是_______。
路由器收到一个IP数据报,其目标地址为202.100.117.4,与该地址匹配的子网是()。
给定程序中,函数fun的功能是:有N×N矩阵,根据给定的m(m<=)值,将每行元素中的值均右移m个位置,左边置为0。例如,N=3,m=2,有下列矩阵123456789程
TheBuildingofthePyramidsTheoldeststonebuildingsintheworldarethepyramids.【46】.Thereareovereightypercentof
最新回复
(
0
)