首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角
admin
2018-11-20
98
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,
a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i一1个分量都是0,B的第j个列向量的后面n—j个分量都是0,而i一1+n—j=n+(i—j一1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/HwW4777K
0
考研数学三
相关试题推荐
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设相似于对角阵,求:A100.
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设,求B一1.
设A,B满足A*BA=2BA一8E,且A=,求B.
设求:AB一BA.
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
设为正定矩阵,令P=求PTCP;
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
随机试题
下列检查中,哪项应先检查下列各项为本病的基本预防措施,除了
在血吸虫的生活史中,对人畜具有感染性的阶段是()
A、中药饮片包装标签B、药品的内标签C、用于运输、贮藏的药品的包装标签D、原料药的标签至少应当注明品名、规格、产地、生产企业、产品批号、生产日期等内容的标签是
关于公司与独资企业的区别,下列哪些说法是正确的?()
有限责任公司的注册资本为在公司登记机关登记的全体股东认缴的()。
根据以下资料。回答81—85题。2006年末与2002年末相比,全社会主要运输方式完成客运量由1608150万人增加到2024158万人,年均增长5.9%;旅客周转量由14126亿人公里增加到19197亿人公里,年均增长8.0%;货运量由14827
下列诗句和作者搭配正确的是:
延长美国的学年,使它与欧洲和日本的相一致的建议经常会遭到这样的反对:削减学校的三个月的暑假将会违反已经确立的可追溯到19世纪的美国传统。确实,在19世纪,大多数的学校在夏季时都放假三个月,但这仅仅是因为在农村地区,成功的收割离不开孩子们的劳作。如果任何政策
电子商务应用系统通常包含【 】系统、支付网关系统、业务应用系统和用户及终端系统。
Namedafteranex-GovernorofNewSouthWales,SydneyistheState’scapitalcity.Locatedonthesouth-eastcoastofAustralia
最新回复
(
0
)