首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=r(A)=2,则( )是A*X=0的基础解系.
A=r(A)=2,则( )是A*X=0的基础解系.
admin
2019-07-12
23
问题
A=
r(A)=2,则( )是A*X=0的基础解系.
选项
A、(1,一1,0)
T
,(0,0,1)
T
.
B、(1,一1,0)
T
.
C、(1,一1,0)
T
,(2,一2,a)
T
.
D、(2,一2,a)
T
,(3,一3,b)
T
.
答案
A
解析
由A是3阶矩阵,因此未知数个数n为3.r(A)=2,则r(A*)=1.
A*X=0的基础解系应该包含n一1=2个解,(A)满足.(1,一1,0)
T
,(0,0,1)
T
显然线性无关,只要再说明它们都是A*X=0的解.A*A=|A|E=0,于是A的3个列向量(1,一1,0)
T
,(2,一2,a)
T
,(3,一3,b)
T
都是A*X=0的解.由于r(A)=2,a和b不会都是0,不妨设a≠0,则
(0,0,a)
T
=(2,一2,a)
T
一2(1,一1,0)
T
也是A*X=0的解.于是(0,0,1)
T
=(0,0,a)
T
/a也是解.
转载请注明原文地址:https://kaotiyun.com/show/HxJ4777K
0
考研数学三
相关试题推荐
[*]
[*]
[*]
设(X,Y)的联合概率密度为求:(X,Y)的边缘密度函数;
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
(2007年)如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt则下列结论正确的是()
(2011年)设则I,J,K的大小关系为()
随机试题
给婴儿添加辅食的原则有哪些?
A.黑色素瘤B.脂肪瘤C.纤维瘤D.血管瘤E.皮脂腺囊肿好发于皮下、界限清楚、分叶状、生长较慢的肿瘤是
临床医生申请血浆时,输血前相容性检测项目不包括
(2007)压气机最理想的压缩过程是采用()。
设置会计科目时,不仅要能全面正确地反映企业的财务状况和经营成果,满足外部投资者和债权人的需要,还应当有利于企业内部管理活动的开展,这是设置会计科目的()原则
TothewestofAmericaliesthe______Ocean;totheeastofAmericaliesthe______Ocean.
我区医疗救助对象患重大疾病医疗救助年封顶线是()万元。
某日深夜,甲喝醉酒后,叫上乙外出找乐,乙应邀开车载甲前往一娱乐场所。当车行至一昏暗的路上时,甲看见路边有一女子丙(21岁)正在等车,遂对乙说:“停车下去看看,找那个女的玩玩。”乙便下车,跟丙搭讪,发现丙神情恍惚,有点发呆,顿觉无趣,便上车对甲说:“那个女的
InDecember,WaymoLLC,theleadingdriverlesscarcompany,broughtouttheworld’sfirstcommercialrobo-taxiservice.Butfor
Whydomostparentsfeelembarrassedwhentheirchildrengraduatefromhighschool?
最新回复
(
0
)