首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,E为3阶单位矩阵. 求方程组Ax=0的一个基础解系;
设A=,E为3阶单位矩阵. 求方程组Ax=0的一个基础解系;
admin
2018-07-26
48
问题
设A=
,E为3阶单位矩阵.
求方程组Ax=0的一个基础解系;
选项
答案
对方程组的系数矩阵A施以初等行变换 [*] 设x=(x
1
,x
2
,x
3
,x
4
)
T
,选取x
4
为自由未知量,则得方程组的一般解:x
1
=-x
4
,x
2
=2x
4
,x
3
=3x
4
(x
4
任意). 令x
4
=1,则得方程组Ax=0的一个基础解系为 α=(-1,2,3,1)
T
解析
转载请注明原文地址:https://kaotiyun.com/show/HTW4777K
0
考研数学三
相关试题推荐
设随机变量X~B,Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,-1)的值.
计算二重积分,其中D是两个圆:x2+y2≤1与(x-2)2+y2≤4的公共部分.
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时的总收益函数为R(x,y)=42x+27y-4x2-2xy-2,总成本函数为C(x,y)=36+8x+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元,1万
设A是n阶矩阵,Am=0,证明E-A可逆.
已知=0,其中a,b是常数,则
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
设A是n阶反对称矩阵,x是n维列向量,如Ax=Y,证明x与y正交.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
设A为三阶矩阵,有三个不同特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3.(1)证明:β不是A的特征向量;(2)β,Aβ,A2β线性无关;(3)若A3β=Aβ,计算行列式|2A+3E|.
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=—1是方阵B的两个特征值,则|A+2AB|=________。
随机试题
下列不属于土壤动物生态效应的是
既能发表解肌,又能升阳止泻的物是
事故防范措施和计划风险属于( )。
CH3O-+CH3Br→________。
有人向某市政府提议应该在所有新建的房屋内安装一种起火时会自动激发的洒水器。但是一位房地产开发商认为,既然90%的房屋着火都是被家庭成员扑灭的,所以安装室内自动洒水器对灭火意义不大。以下哪项如果为真,则最能削弱房地产开发商的观点?
It’sfairlywellknownthatabaddiet,alackofexercise,andgeneticscanallcontributetotype2diabetes.Butanewglobal
ManofFewWordsEveryonechasessuccess,butnotallofuswanttobefamous.SouthAfricanwriterJohnMaxwellCoetzee
I’msorrynottobeabletohelpyou.I’msorrythat______.
Nearlyeverybodyenjoyschicken,andthemostfamousnameinchickenisKentuckyFriedChicken.Mr.Sanders,themanwhostarted
A、Shehasbreadeverymorning.B、Sheeatseggseverymorning.C、Shehasalottoeatforbreakfast.D、Shedoesnotknowwhatto
最新回复
(
0
)