首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况: (1)点M0(x0,y0,z0)在的∑外部; (2)点M0(x0,y0,z0)在
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况: (1)点M0(x0,y0,z0)在的∑外部; (2)点M0(x0,y0,z0)在
admin
2022-07-21
79
问题
计算
,其中r=(x-x
0
)i+(y-y
0
)j+(z-z
0
)k,r=|r|,n是曲面∑的外法向量,点M
0
(x
0
,y
0
,z
0
)是定点,点M(x,y,z)是动点,研究以下两种情况:
(1)点M
0
(x
0
,y
0
,z
0
)在的∑外部;
(2)点M
0
(x
0
,y
0
,z
0
)在的∑内部.
选项
答案
设n=cosαi+cosβj+cosγk,则 I=[*][(x-x
0
)dydz+(y-y
0
)dzdx+(z-z
0
)dxdy] 其中 P(x,y,z)=[*](x-x
0
),Q(x,y,z)=[*](y-y
0
),R(x,y,z)=[*](z-z
0
) (1)当点M
0
(x
0
,y
0
,z
0
)在的∑外部,P,Q,R在∑围成的区域Ω内的一阶偏导数连续,且 [*] (2)当点M
0
(x
0
,y
0
,z
0
)在的∑内部时,作以M
0
为球心,r为半径的球面∑
1
,取外侧,使∑
1
位于∑的外部,∑
1
和∑围成的区域为Ω
1
.则由高斯公式,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HxR4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且d(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,6),使得f’(ξ)>0,f’(η)<0.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为______.
求下列极限:
(1)设,求a,b的值.(2)确定常数a,b,使得ln(1+2x)+=x+x2+o(x2).(3)设b>0,且,求b.
设x∫0x+y∫0x≤2ay(a>0),则f(x,y)dxdy在极坐标下的累次积分为().
设函数则f(x)在点x=0处().
由椭圆柱面z=z2+2y2与抛物柱而z=2一x2所围立体的体积为_____.
(2007年)如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是()
随机试题
以下所列抗菌药物的给药途径中,最正确的是
CT扫描中常用的FOV是指
瘢痕性类天疱疮在口腔中病损的最常见部位是
潮湿环境下,照明电源的电压不大于()V。
新增付款方式。付款方式编码:01付款方式名称:银行汇票进行票据管理:不需要
以下关于公司型基金的表述中,正确的是()。
将细菌培养物由供氧条件转为厌氧条件,下列过程中会加快的一种是()。
王充认为教育的最高目标是培养“鸿儒”,其有别于儒生、通人、文人的显著特征是
表达式3.6-5/2+1.2+5%2的值是
Whydoestheprofessormention$20bill?
最新回复
(
0
)