首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
admin
2019-09-04
47
问题
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫
0
ξ
f(t)dt+(ξ-1)f(ξ)=0.
选项
答案
令φ(x)=x∫
0
x
f(t)dt-∫
0
x
f(t)dt. 因为φ(0)=φ(1)=0,所以由罗尔定理,存在ξ∈(0,1),使得φ’(ξ)=0. 而φ’(x)∫
0
x
f(t)dt+(x-1)f(x),故∫
0
ξ
f(t)dt+(ξ-1)f(ξ)=0.
解析
由∫
0
x
f(t)dt+(x-1)f(x)=0,得∫
0
x
f(t)dt+xf(x)-f(x)=0,从而
(x-∫
0
x
f(t)dt-∫
0
x
f(t)dt)’=0,辅助函数为φ(x)=x∫
0
x
f(t)dt-∫
0
x
f(t)dt.
转载请注明原文地址:https://kaotiyun.com/show/ViJ4777K
0
考研数学三
相关试题推荐
(1994年)设方程exy+y2=cosx确定y为x的函数,则=_______.
(2004年)设f(x)在(一∞,+∞)内有定义,且则()
(2008年)设函数f连续,若其中区域Duv为图中阴影部分,则=()
设z=f(u,x,y),u=xey,其中f有二阶连续偏导数,求
设有线性方程组证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
设X1,…,Xn为相互独立的随机变量,Sn=X1+…+Xn,则根据列维一林德贝格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,…,Xn
设D是由曲线y=sinx+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.
若一条二次曲线把(-∞,0)内的曲线段y=ex和(1,+∞)内的曲线段连接成一条一阶可导的曲线,则定义在[0,1]上的这条二次曲线为_________________________。
设f(x)在[-δ,δ]有定义,且f(0)=f’(0)=0,f’’(0)=a>0,又收敛,则p的取值范围是()。
随机试题
A、Whetherthepracticeshouldbeallowedtocontinueinfuture.B、Whetherthereshouldbeaminimumagelimitforexecution.C、W
A.碘酊B.过氧乙酸C.戊二醛D.漂白粉E.乙醇胃镜的消毒可采用
治疗温热病邪入血分,发斑,神昏,壮热。宜选用
某公司某项目(以下简称工程),总投资为768万元,其中设备投资为370万元,土建及其他投资为398万元。公司于2001年9月27日办理了该工程的《村镇规划选址意见书》,2002年2月8日开始办理土地审批手续。2001年11月,公司将工程发包给自称是挂靠某建
2015年1月1日,某地方政府拟采购A物资。在实施招标采购过程中,甲公司向该地方政府提供的生产资质为去年非法取得。在采购执行过程中,由于其他原因,该地方政府对该采购事项予以废标。要求:根据上述资料,回答下列问题。该地方政府的预算应由()批准。
下列选项中,关于商业银行从事理财产品销售活动的说法,正确的是()。
某小学六(3)班是全校有名的乱班,上课纪律混乱,打架成风。班上有一名“在野学生领袖”,喜好《水浒》人物,爱打抱不平,常常“为朋友两肋插刀”。打架时,只要他一挥手,其他人就蜂拥而上。班上正气不能抬头,班干部显得软弱无力,一全班同学的学习成绩逐步下降。如何
foodsecurity
Areyoufacingasituationthatlooksimpossibletofix? In1969,thepollutionwasterriblealongtheCuyahogaRivernearC
EuropeanimmigrantstoColonialAmericabroughtwiththemtheirculture,traditionsandphilosophyabouteducation.Manyof【S1】_
最新回复
(
0
)