首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A经过初等行变换得到B,则正确的是 ( )
设A是n阶矩阵,A经过初等行变换得到B,则正确的是 ( )
admin
2022-06-09
47
问题
设A是n阶矩阵,A经过初等行变换得到B,则正确的是 ( )
选项
A、A,B的列向量组是等价向量组
B、A,B的行向量组是等价向量组
C、非齐次线性方程组Ax=b与Bx=b是同解方程组
D、|A|=|B|
答案
B
解析
由已知,存在可逆矩阵Q,使得QA=B,将A,B按行分块,有QA=
所以β
i
=q
i1
a
1
+q
i2
a
2
+…+q
in
a
n
,i=1,2,…,n,故B的行向量β
i
.可由A的行向量组a
1
,a
2
,…,a
n
线性表示,又由于Q可逆,故
A=Q
-1
B=Q
-1
所以A的行向量a
i
(i=1,2,…,n)也可由B的行向量组线性表示,B正确,对于A,如
A=
,B=
,Q=
显然A,B的列向量组不能互相线性表示,故不等价,对于C,由Q可逆,可知Ax=0与Bx=0同解,但不是对增广矩阵作初等行变换,故
Ax=b与Bx=b不一定同解,
对于D,由QA=B,可知|Q||A|=|B|,又由于|Q|不一定等于1,故D不正确
转载请注明原文地址:https://kaotiyun.com/show/I9f4777K
0
考研数学二
相关试题推荐
设函数f(x)=则f(x)在点x=0处()
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
比较下列积分值的大小:(Ⅰ)l1=ln3(x+y)dxdy,I0=(x+y)3dxdy,I3=[sin(x+y)]3dxdy,其中D由x=0,y=0,x+y=,x+y=1围成,则I1,I2,I3之间的大小顺序为
设函数μ(x,y)=φ(x+y)+φ(x一y)+∫x-yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
设y=x+sinx,dy是y在x=0点的微分,则当△x→0时,()
累次积分dθ∫0cosθrf(rcosθ,rsinθ)dr等于().
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3为正定二次型,则λ的取值范围是_____.
求极限=_______.
随机试题
财务结果是由计算得出的______指标,而非财务指标是______指标。
决定感染后果的因素有()
A.痰气郁结,气机不畅B.气滞血瘀,痰凝正虚C.气郁痰火,阴阳失调D.气机逆乱,阴阳失调厥证的主要病机是
患者,男,59岁,身高170cm,体重85kg,患高血压病10余年,未规律服用降压药,血压波动在(160~140)/(100~90)mmHg,未予重视,每于头晕、头痛明显时服药,症状消失后停药,吸烟40年,每日20支,饮酒20年,每日2两,近日由于工作劳累
A.仰卧位,垫肩头过伸B.侧卧位C.仰卧位,双肩尽量下拉D.仰卧位,下颏尽量内收E.俯卧位,垫头尽量使脊柱伸直声门下区癌治疗时常用治疗体位是
产程最大加速期是指临产
既能消食化积,又能散瘀的药物是
依据《中华人民共和国保险法》的规定,合同约定分期支付保险费的,投保人应当于合同成立时支付首期保险费,并应当按期支付其余各期的保险费。投保人支付首期保险费后,除合同另有约定外,投保人超过规定的期限()日未支付当期保险费的,合同效力中止,或者由保
资本市场线没有给出任意证券或组合的收益风险关系。()
一棵二叉树共有25个结点,其中5个是叶子结点,则度为1的结点数为( )。
最新回复
(
0
)