首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三)设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
(2004年试题,三)设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2013-12-27
60
问题
(2004年试题,三)设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*]若λ=2是特征方程的二重根,则2
2
一8×2+18+3a=0,得a=一2.当a=一2时,A的特征值为2,2,6,矩阵[*]的秩为1,则λ=2对应的线性无关的特征向量有两个,故此时A可相似对角化;若A=2不是特征方程的二重根,则λ
2
一8λ+18+3a是完全平方式,从而得△=64—4(18+3a)=0,即得[*].当[*]时,A的特征值为2,4,4,矩阵[*]的秩为2,故λ=4对应的线性无关的特征向量只有一个,故此时A不可相似对角化.
解析
n阶矩阵A可相似对角化
对于A的任意k
i
重特征值λ
i
,恒有n—r(λ
i
E一A)=k
i
,而单根一定有且只有一个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/IC54777K
0
考研数学一
相关试题推荐
判断函数的单调性.
设函数f(x,y)连续,则等于()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明
设f(x)为偶函数,且(C为常数),记,则对任意a∈(-∞,+∞),F(-a)等于()
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
证明不等式:当a≥0,b≥0时,ea+b≥e2(a2+b2)/4.
曲线y=y(x)可表示为x=t3-t,y=t4+t,t为参数,证明:y=y(x)在t=0处为拐点。
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
正方体冰块放在空气中,其边长为m,在温度恒定的情况下,冰块的融化速度(即体积减少速度)与冰块的表面积成正比,比例常数为k>0.设冰块在融化过程中始终保持正方体形状.经过一个小时的融化,冰块的体积减小了四分之一.求冰块完全融化需要的时间.
随机试题
郄穴多用于治疗
A.徐发B.继发C.合病D.并病E.复发
区别血尿与血红蛋白尿的主要方法是
(2008)土的十字板剪切试验适用于下列哪一种黏性土?
按照权证行权所买卖的标的股票来源不同,可将权证分为()。
我国饭店最常用的计提折扣的方法是()的月折旧额与年折旧率都是不变的。
银行不得受理的银行汇票有()。
根据刑事法律制度的规定,下列各项中,属于管制法定量刑期的是()。
1917年俄国爆发的十月社会主义革命,对中国的先进分子的主要影响是
已知矩阵A的伴随矩阵A*=diag(1,1,1,8),且ABA—1=BA—1+3E,求B。
最新回复
(
0
)