首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P﹣1AP)T属于特征值λ的特征向量是( ).
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P﹣1AP)T属于特征值λ的特征向量是( ).
admin
2020-06-05
46
问题
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P
﹣1
AP)
T
属于特征值λ的特征向量是( ).
选项
A、P
﹣1
α
B、P
T
α
C、Pα
D、(P
﹣1
)
T
α
答案
B
解析
由于(P
﹣1
AP)
T
β=λβ,即P
T
A(P
﹣1
)
T
β=λβ,把四个选项中的向量逐一代入上式替换β,同时考虑到Aa=λα,可得选项(B)正确,即p
T
A(P
﹣1
)
T
(P
T
α)=P
T
Aα=P
T
λα=λP
T
α
转载请注明原文地址:https://kaotiyun.com/show/INv4777K
0
考研数学一
相关试题推荐
设A=,B为三阶非零矩阵,且AB=O,则r(A)=________.
设z=z(x,y)是由方程z-y-z+2xez-y-x=0确定的隐函数,则在点(0,1)处z=z(x,y)的全微分dz|(0,1)=()
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
设A,B是n阶矩阵,则C=的伴随矩阵是
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示,则
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
二次型f(x1,x2,x3)=x12+x22+x12-4x2x3的正惯性指数为().
(98年)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.[附表]:t分布表.P{t(n)≤
微分方程的通解为__________.
随机试题
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】______theturnofthecenturywhenjazzwasborn,Americ
冠心病病人术前三日应停用()
下列除哪一项外均为何首乌的功效
A.疫苗B.中成药C.发生严重不良反应,经评估不适宜的药品D.非临床治疗首选的药品根据《国家基本药物目录管理办法(暂行)》应当从国家基本药物目录中调出的药品是
根据我国《民法通则》规定,民事法律行为的一般生效要件包括()。
2010年3月6日,家住A市B区的刘某因做药材生意资金紧张,与A市C区的李某签订了一份借款合同,约定刘某向李某借款35万元,2010年6月1日将本金和利息还清,并以刘某已辞世的父亲在A市D区的一套三居室房屋作为抵押,并在相关部门办理了有关房屋抵押登记。20
《建设工程安全生产管理条例》规定,实行施工总承包的,总承包单位应负责()。
在Windows中,“剪贴板”是内存中的一块区域。()
已知则S的整数部分是:()
行政环境、行政文化、行政人员和科学技术是影响行政效率的主要因素。()
最新回复
(
0
)