首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] 已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2. (Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
[2012年] 已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2. (Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
admin
2019-05-10
130
问题
[2012年] 已知A=
,二次型f(x
1
,x
2
,x
3
)=X
T
(A
T
A)X的秩为2.
(Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
选项
答案
(I)由秩(A
T
A)=秩(A)=2可求得a的值;(Ⅱ)写出二次型矩阵A
T
A求出其特征值,将每一个特征值代入(Aλ-AE)X=0求出其基础解系,将基础解系正交规范化,以这些向量为列向量的矩阵即为正交变换Q.这时以特征值为系数的标准形即为所求的标准形. (I)因二次型的秩为2,故秩(A
T
A)=秩(A)=2,而 [*] 故当a=一1时秩(A)=2,即实数a的值等于一1. (II)令B=A
T
A=[*],则 [*] =(λ一2)[(λ一2)(λ一4)一8]=λ(λ一2)(λ一6). 故B的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 解(2E—B)X=0,(6E—B)X=0,(0E—B)X=0,得其基础解系分别为 α
1
=[1,一1,0]
T
,α
2
=[1,1,2]
T
,α
3
=[1,1,一1]
T
. 因λ
1
,λ
2
,λ
3
互异,α
1
,α
2
,α
3
必相互正交,只需将其单位化,得 β
1
=[*][1,一1,0]
T
,β
2
=[*][1,1,2]
T
,β
3
=[*][1,1,一1]
T
. 令Q=[β
1
,β
2
,β
3
],则Q为正交矩阵.在正交变换X=QY下,有Q
T
BQ=Q
T
(A
T
A)Q=Λ,其中对角阵为A=diag(2,6,0).这时,二次型f化为标准形 f(X)=X
T
(A
T
A)X=Y
T
ΛY=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/IVV4777K
0
考研数学二
相关试题推荐
求由曲线y=4-χ与χ轴围成的部分绕直线χ=3旋转一周所成的几何体的体积.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(χ)=∫0tanχarctant2dt,g(χ)=χ-sinχ,当χ→0时,比较这两个无穷小的关系.
求不定积分
设函数y=y(χ)由方程组确定,求
设f(χ)的一个原函数为,则χf′(χ)dχ=_______.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设=c(≠0),求n,c的值.
设曲线y=lnχ与y=k相切,则公共切线为_______.
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
随机试题
正常人体不同组织回声强度的叙述,错误的是
肺痈患者,咳吐大量脓血痰,气味腥臭异常,舌红苔黄腻,脉滑数。其病期是()
一下颌双尖牙,活髓,全冠修复水门汀粘固后第2天出现自发痛,最可能的原因是
契税的税率采用()。
某小区开发商要求建筑师在规划允许的范围内将容积率做到最大,如下做法中哪种最不恰当?[2010—39]
银行在受理借款人个人抵押授信贷款业务时,不能接受的抵押物是()。
在个体人的心理发展中,出现最早、也最先开始衰退的是()。
AshasbeenalltooapparentinrecentdaysatBalcombe,fewissuescausegreaterconcernthanenergypolicy.Manyvillagecommu
框架效应是指对于相同的事实信息,采用不同的表达方式,会使人产生不同的判断决策。一般来讲,在损失和收益面前,人们更倾向于关注损失。根据上述定义,下列情形不存在框架效应的是:
经济学革命的前提是对主流经济学的批判,阿玛蒂亚.森的“革命”也首先由此入手。第一,主流经济学把发展视为CDP的增长或人均收入的提高,这不仅片面,而且会掩盖一系列畸形发展必然带来的恶果,如贫富两极分化、环境污染、人的自由被剥夺等。阿玛蒂亚.森认为,应“以自由
最新回复
(
0
)