首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] 已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2. (Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
[2012年] 已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2. (Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
admin
2019-05-10
102
问题
[2012年] 已知A=
,二次型f(x
1
,x
2
,x
3
)=X
T
(A
T
A)X的秩为2.
(Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
选项
答案
(I)由秩(A
T
A)=秩(A)=2可求得a的值;(Ⅱ)写出二次型矩阵A
T
A求出其特征值,将每一个特征值代入(Aλ-AE)X=0求出其基础解系,将基础解系正交规范化,以这些向量为列向量的矩阵即为正交变换Q.这时以特征值为系数的标准形即为所求的标准形. (I)因二次型的秩为2,故秩(A
T
A)=秩(A)=2,而 [*] 故当a=一1时秩(A)=2,即实数a的值等于一1. (II)令B=A
T
A=[*],则 [*] =(λ一2)[(λ一2)(λ一4)一8]=λ(λ一2)(λ一6). 故B的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 解(2E—B)X=0,(6E—B)X=0,(0E—B)X=0,得其基础解系分别为 α
1
=[1,一1,0]
T
,α
2
=[1,1,2]
T
,α
3
=[1,1,一1]
T
. 因λ
1
,λ
2
,λ
3
互异,α
1
,α
2
,α
3
必相互正交,只需将其单位化,得 β
1
=[*][1,一1,0]
T
,β
2
=[*][1,1,2]
T
,β
3
=[*][1,1,一1]
T
. 令Q=[β
1
,β
2
,β
3
],则Q为正交矩阵.在正交变换X=QY下,有Q
T
BQ=Q
T
(A
T
A)Q=Λ,其中对角阵为A=diag(2,6,0).这时,二次型f化为标准形 f(X)=X
T
(A
T
A)X=Y
T
ΛY=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/IVV4777K
0
考研数学二
相关试题推荐
设L:y=e-χ(χ≥0).(1)求由y=e-χ、χ轴、y轴及χ=a(a>0)所围成平面区域绕χ轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
用变量代换χ=lnt将方程+e2χy=0化为y关于t的方程,并求原方程的通解.
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
证明:∫01χm(1-χ)ndχ=∫01χn(1-χ)mdχ,并用此式计算∫01(1-χ)50dχ.
当χ→0时,下列无穷小中,哪个是比其他三个更高阶的无穷小().
设f(χ)=求f(χ)的极值.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
随机试题
“四境盈壘,道殣相望,盗賊司目,民無所放。”句中“放”应释为【】
2岁男孩,持续高热伴咳嗽6天,加重1天,烦躁、气促,青霉素治疗无效。体检:体温39.5℃,口唇青紫,三凹征明显,呼吸65次/分,心率160次/分,气管略右移,左背下部呼吸音低,叩诊浊音,肝肋下2cm,X线胸片示两肺散在斑片状阴影,左肺下部密度均匀升高,可见
急性上呼吸道感染最主要的治疗措施是
A.准予注册B.不予注册C.注销注册D.重新注册E.撤销注册
小儿可自动控制排尿的年龄约为
滴用β受体阻断剂后眼部不良反应有()。
小儿肥胖症的正确饮食结构()。
在工程验收过程中,发现某检验批达不到设计要求,如果经()核算,仍能满足结构安全和使用功能的情况下,可以予以验收。
在道路货物分类中,按运输条件可将货物分为()。
Backintheday,agoodreportcardearnedyouaparentalpatontheback,butnowitcouldbemoneyinyourpocket.Experiments
最新回复
(
0
)