首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2-α3线性相关,则α=________.
向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2-α3线性相关,则α=________.
admin
2021-11-15
42
问题
向量组α
1
,α
2
,α
3
线性无关,且α
1
+aα
2
+4α
3
,2α
1
+α
2
-α
3
,α
2
-α
3
线性相关,则α=________.
选项
答案
5
解析
(α
1
+aα
2
+4α
3
,2α
1
+α
2
-α
3
,α
2
+α
3
)=(α
1
,α
2
,α
3
)
因为α
1
,α
2
,α
3
线性无关,而α
1
+aα
2
+4α
3
,2α
1
+α
2
-α
3
,α
2
+α
3
线性相关,
所以
=0,解得a=5.
转载请注明原文地址:https://kaotiyun.com/show/IYy4777K
0
考研数学二
相关试题推荐
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
问a,b,c取何值时,(I)(II)为同解方程组?
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2—2α3,(α2一α1),α1—3α2+2α3中,是对应齐次线性方程组Ax=0解向量的共有()
随机试题
简述行政绩效评估的程序。
过敏性紫癜的改变有
下列各项,属于行政处罚的是
氟斑牙的形成是由于氟引起
( )作为一种全方位的搜索过程,需要进行广泛的调查,收集大量的数据。
以下属于钻孔设备的有()。
申请人王某向专利局提交的发明申请公布后,另一家企业提交了多篇与该专利申请相关的文献,并提出了该申请不应当被授予专利权的意见。以下说法正确的是:
已知某海滨浴场的海浪高度y(单位:米)与时间t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:经长期观测,函数y=f(t)可近似地看成是函数y=Acosωt+b.根据以上数据,求出函数y=Acosωt+b的最小正周
设总体X~E(λ),则来自总体X的简单随机样本X1,X2,…,Xn的联合概率密度f(x1,x2,…,xn)=________.
Когдамыуже____всамолете,онпризнался,чтоникогдараньшене____насамолете.
最新回复
(
0
)