首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为( )。
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为( )。
admin
2021-01-28
98
问题
设A=(α
1
,α
2
,α
3
,α
4
)为四阶方阵,且α
1
,α
2
,α
3
,α
4
为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)
T
,则方程组A
*
X=0的基础解系为( )。
选项
A、α
1
,α
2
,α
3
B、α
1
,α
2
,α
3
+α
3
C、α
1
,α
3
,α
4
D、α
1
+α
2
α
2
+2α
4
α
4
答案
D
解析
由rA=3得,r(A
*
)=1,则A
*
X=0的基础解系由3个线性无关的解向量构成。
由α
1
=4α
3
=0得α
1
,α
3
成比例,显然A、B、C不对,选D。
转载请注明原文地址:https://kaotiyun.com/show/Iex4777K
0
考研数学三
相关试题推荐
设二阶连续可导,又,求f(x).
A、当t≠2时,r(A)=1B、当t≠2时,r(A)=2C、当t=2时,r(A)=1D、当t=2时,r(A)=2A方法一:当t≠2时,为AX=0的两个线性无关的解,从而3-r(A)≥2,r(A)≤1,又由A≠0得r(A)≥1,即r(A)=1,应选(
[2003年]计算二重积分其中积分区域D={(x,y)|x2+y2≤π).
设则有()
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
微分方程的通解是(其中C为任意常数)()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
[2014年]求极限
设f(x)满足。(Ⅰ)讨论f(x)在(-∞,+∞)是否存在最大值或最小值,若存在则求出;(Ⅱ)求y=f(x)的渐近线方程。
设函数f(x)有二阶连续导数,且则
随机试题
关于胸外心脏按压,下列不正确的是()
炎症过程中最早出现的血管反应是
列缺穴的简便取穴法为
急进性肾小球肾炎最突出的临床表现是
GBZ2.1-2007中规定工作场所空气中容许浓度的粉尘包括
患者,女,23岁。有长期癫痫病史,来院前6小时内发作2次,到院后又有一次全身性大发作,历时2分钟,现处于发作后状态,宜采取的治疗是
甲的汇票遗失,向法院申请公示催告。公告期满后无人申报权利,甲申请法院作出了除权判决。后乙主张对该票据享有票据权利,只是因为客观原因而没能在判决前向法院申报权利。乙可以采取哪种法律对策?()
()提出了“儿童中心”“活动中心”“经验中心”的新三中心论。
张先生认识赵、钱、孙、李、周5位女士。(1)5位女士分为两个年龄档:3位女士小于30岁,2位女士大于30岁;(2)2为女士是教师,其他3位女士秘书;(3)赵和孙属于相同年龄档;(4)李和周不属于相同年龄档;
对管理信息系统的结构描述,一般可以从横向和纵向两个方面来描述。“人员结构安排”是哪个管理层次的管理信息系统的任务?
最新回复
(
0
)