首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就k的不同取值情况,确定方程在开区间内根的个数,并证明你的结论.
就k的不同取值情况,确定方程在开区间内根的个数,并证明你的结论.
admin
2014-01-26
64
问题
就k的不同取值情况,确定方程
在开区间
内根的个数,并证明你的结论.
选项
答案
设[*],则f(x)在[*]上连续. 由[*],得f(x)在[*]内的唯一驻点[*]. 由于当x∈(0,x
0
)时,f’(x)<0,当x∈[*]时,f’(x)>0,所以f(x)在[0,x
0
]上单调减少,在[*]上单调增加. 因此x
0
是f(x)在[*]内的唯一最小值点,最小值为y
0
=f(x
0
)=[*] 又因[*],故在[*]内,f(x)的取值范围为[y
0
,0). 故当k[*][y
0
,0),即k<y
0
或k≥0时,原方程在[*]内没有根; 当k=y
0
时,原方程在[*]内有唯一根x
0
; 当是k∈(y
0
,0)时,原方程在(0,x
0
)和[*]内各恰有一根,即原方程在[*]内恰有两个不同的根.
解析
[分析] 令
,讨论方程f(x)=k是在开区间
内根的个数,实质上只需研究函数f(x)在
上图形的特点,f(x)=k在开区间
内根的个数即为直线y=k与曲线y=f(x)在区间
内交点的个数.
[评注] 讨论方程的根、函数的零点、曲线的交点属于同类题型,是涉及导数应用的综合颢。府予以高度重视.
转载请注明原文地址:https://kaotiyun.com/show/Ih34777K
0
考研数学二
相关试题推荐
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
(12年)设随机变量X与Y相互独立,且都服从参数为1的指数分布.记U=max{X,Y),V=min{X,Y}.(Ⅰ)求V的概率密度fV(v);(Ⅱ)求E(U+V).
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
(91年)某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.5p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有唯一解,并求x1;
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3).(Ⅰ)证明存在η∈(0,2),使f(η)=f(0);(Ⅱ)证明存在ξ∈(0,3),使f’’(ξ)=0.
(2012年)证明:一1<x<1。
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
随机试题
有下列情形之一的,不予医师执业注册,除了
平阳霉素环磷酰胺
患者,男,70岁。全口义齿初戴1周,咬合时上腭压痛。检查:上颌硬区黏膜红肿,余未见异常。首选的处理方法是
直接酸碱滴定法测定阿司匹林含量时,当滴定进行完全后,1mol的氢氧化钠相当阿司匹林的摩尔数是
图示两电路相互等效,由图(b)可知,流经10Ω电阻的电流IR=1A,由此可求得流经图(a)电路中10Ω电阻的电流I等于()。
某水库枢纽工程主要由大坝及泄水闸等组成。大坝为壤土均质坝,最大坝高15.5m,坝长1135m。该大坝施工承包商首先根据设计要求就近选择某一料场,该料场土料黏粒含量较高,含水量较适中。在施工过程中,料场土料含水量因天气等各种原因发生变化,比施工最优
中国奉行独立自主的和平外交政策,始终不渝地走和平发展道路,绝对不会因为综合国力的增强而改变。这是基于()。①和平与发展的当今时代潮流②全球化使国家间的利益趋于一致③我国的国家性质和历史传统④国家间共同利益高于国家自身利益
甲容器中有浓度18%的盐水若干,乙容器中盐水浓度为12%,其质量为甲容器中盐水质量的一半,则甲、乙容器中盐水混合后的浓度为:
WithAirbus’sgiantA380airlinerabouttotaketotheskies,youmightthinkplanescouldnotgetmuchbiggerandyouwouldbe
Entertheinformationage.Informationistherawmaterialformanyofthebusinessactivities【C1】______thisnewera,justas
最新回复
(
0
)