首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明: 对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得 f(x)=f(0)+xf’[θ(x)x].
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明: 对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得 f(x)=f(0)+xf’[θ(x)x].
admin
2019-09-23
64
问题
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得
f(x)=f(0)+xf’[θ(x)x].
选项
答案
对任意x∈(-1,1),根据微分中值定理,得 f(x)=f(0)+xf’[θ(x)x],其中0<θ(x)<1. 因为f"(x)∈C(-1,1)且f"(x)≠0,所以f"(x)在(-1,1)内保号,不妨设f"(x)>0,则f’(x)在(-1,1)内单调增加,又由于x≠0,所以θ(x)是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/ImA4777K
0
考研数学二
相关试题推荐
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
设f(χ)在χ=0的邻域内二阶连续可导,=2,求曲线y=f(χ)在点(0,f(0))处的曲率.
设曲线L位于xOy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A.已知求L的方程.
设曲线y=y(χ)上点(χ,y)处的切线垂直于此点与原点的连线,求曲线y=y(χ)的方程.
已知凹曲线y=f(x)在曲线上的任意一点(x,f(x))处的曲率为且f(0)=0,f’(0)=0,则f(x)=______________。
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.求曲线Γ的表达式.
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y(x)满足的微分方程和初始条件.
设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(1)=2,则g(1)等于()
若函数其中f是可微函数,且则函数G(x,y)=()
随机试题
根据《建设工程施工合同(示范文本)》(GF—99—0201)规定,()应按照合同约定负责施工场地及其周边环境与生态的保护工作。
下列属于财务管理风险对策的有()。
直到完成使命,他才意识到自己得了重病。
______LiuXiangfailedtocompeteinthe2008BeijingOlympicGames,heisstillaherointheeyesofourChinesepeople.
某养鸡场散养的1000只肉仔鸡,30H龄起大批鸡精神委顿,食欲减退,双翅下垂,羽毛逆立,下痢至排大量血便,1周内死亡率在30%以上。病死鸡剖检病变主要发生在()
强心苷的药理作用不包括
2006年9月20日,中国A市甲公司作为买方与作为卖方的位于意大利B市的乙公司在北京签订购买由意大利丙公司生产的钢琴1万架的合同。后来,钢琴按时运抵甲公司,但甲公司验货后发现该批钢琴质量存在严重缺根据上述案情,请回答以下问题:陷,于是甲公司要求乙公司退还相
根据《水利水电工程等级划分及洪水标准》SL252--2000,下列永久建筑物的级别可提高一级的有()。
在数据库中,建立索引的主要作用是
A、No,that’smyaunt’s.B、No,that’smymother.C、Yes,Ilovemymother.A
最新回复
(
0
)