首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则 ( )
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则 ( )
admin
2019-01-24
88
问题
设A是3阶矩阵,ξ
1
=(1,2,-2)
T
,ξ
2
=(2,1,一1)
T
,ξ
3
=(1,1,t)
T
是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)
T
,则 ( )
选项
A、t=-l时,必有r(A)=1.
B、t=-1时,必有r(A)=2.
C、t≠-1时,必有r(A)=1.
D、t≠-1时,必有r(A)=2.
答案
C
解析
记B=(ξ
1
,ξ
2
,ξ
3
)=
.
法一 由ξ
1
,ξ
2
,ξ
3
是Ax=b的解向量,t≠-1时,r(B)=3,知ξ
1
,ξ
2
,ξ
3
线性无关,ξ
1
-ξ
2
,ξ
2
-ξ
3
是对应齐次方程组Ax=0的两个线性无关解,故r(A)≤1,但A≠O(若A=O,则Ax=b无解,这和题设条件矛盾),故必有r(A)=1,故应选(C).
法二 Aξ
i
=b(i=1,2,3),故有A(ξ
1
,ξ
2
,ξ
3
)=AB=
=(b,b,b).
当t=-1时,有ξ
1
+ξ
2
=3ξ
3
,而A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=b+b=2b≠A·(3ξ
3
)=3b,所以
t=-1不符合题意,故(A),(B)都不成立.
当t≠-1时,r(B)=3,则B是可逆矩阵,故r(A)=r(AB)=r(b,b,b)=1.
故(C)成立,则(D)必不成立.
转载请注明原文地址:https://kaotiyun.com/show/IvM4777K
0
考研数学一
相关试题推荐
设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ一1)f(ξ)=0.
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴旋转一周而得的旋转体的体积V(a).
设总体X的概率分布为θ(0<θ<)是未知参数,用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值·
设二维随机变量(X,Y)的联合密度f(x,y)=.求X,Y的边缘密度,问X,Y是否独立?
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=Xi,Z=Xm+k.求:D(Y),D(Z);
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后放回.
求过点A(一1,2,3)垂直于L:且与平面π:7x+8y+9z+10=0平行的直线方程.
(2003年)设{an},{bn},{cn}均为非负数列,且则必有()
随机试题
患者张某,男性,28岁。农民,患者发热恶寒,咳嗽,咳白黏痰,痰量由少渐多,胸痛剧烈,呼吸不利,苔薄黄,脉浮滑数。其治法是
营养大腿诸肌的主要血管是
构成招标采购服务项目费用的最主要部分是()。
根据《全国年节及纪念日放假办法》,()不是全体公民放假的节日。
下列各项中,不能记入“销售费用”的是()。
甲公司为生产加工企业,其在20×6年度发生了以下与股权投资相关的交易: (1)甲公司在若干年前参与设立了乙公司并持有其30%的股权,将乙公司作为联营企业,采用权益法核算。20×6年1月1日,甲公司自A公司(非关联方)购买了乙公司60%的股权并取得了控制
四棱锥P—ABClD底面为正方形,侧面PAD为等边三角形,且侧面PAD上底面ABCD,点M在底面正方形ABCD内运动,且满足MP=MC,则点M在正方形ABCD内的轨迹一定是().
实现中华民族伟大复兴的中国梦,反映了近代以来一代又一代中国人的美好夙愿,进一步揭示了中华民族的历史命运和当代中国的发展走向,指明了全党全国各族人民共同的奋斗目标。习近平总书记指出:“实现中国梦必须走中国道路、弘扬中国精神、凝聚中国力量。”这些从根本上讲就是
人民检察院依法对公安机关的侦查活动是否合法实行监督,主要内容是发现和纠正下列违法行为()。
给定资料1.2016年4月19日,中共中央总书记、国家主席、中央军委主席、中央网络安全和信息化领导小组组长习近平主持召开网络安全和信息化工作座谈会,深刻回答了事关中国网信事业长远发展的一系列重大问题,科学描绘了中国建设网络强国的宏伟蓝图和实践路径
最新回复
(
0
)