首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2017-08-31
66
问题
设f(x)二阶连续可导,f(0)=0,f
’
(0)=1,且[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f
’
(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,所以[*],即f
’’
(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
一2,由f(0)=0,f
’
(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
一2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/cTr4777K
0
考研数学一
相关试题推荐
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
13/48
设,其中D={(x,y)|x2+y2≤1),则().
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
设f"(x)∈C[a,b],证明:存在ξ∈(a,b),使得
设f(x)在[0,1]有连续导数,且f(0)=0,令M=|f’(x)|,则必有
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,其中f,g,h对各变量有连续的偏导数,且,求
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ.
随机试题
Afterstudyinginamedicalcollegeforfiveyears,Jane______herjobasadoctorinthecountryside.
对于服药时间,峻下逐水药的服用时间是
计时观察法最主要的三种方法是()。【2004年真题】
企业发生的停工损失属于自然灾害原因造成的,应将实际发生的停工损失记入“营业外支出”科目中。()
销售保单利益确定的保险产品,存在特定情况的,应在取得投保人签名确认的投保声明后方可承保。()
韦氏智力量表V—P差异没有实际意义可见于言语能力对操作能力缺陷的补偿,因为()是两个常常受言语能力影响的操作测验。
A、 B、 C、 D、 C分母2、4、8、16、(32)、64是公比为2的等比数列,分子1、3、7、15、(31)、63是其相对应的分母减1,故所求项为,选C。
连续型随机变量χ的概率密度为,则方差D(X)为()。
陪同口译
人身权利是指公民的人身不受非法侵犯的权利,包括生命健康权、人身自由权、人格尊严权、住宅安全权、通信自由权等具体权利。人最基本、最原始的权利,享有其他各项权利的前提是()
最新回复
(
0
)