首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2017-08-31
42
问题
设f(x)二阶连续可导,f(0)=0,f
’
(0)=1,且[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f
’
(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,所以[*],即f
’’
(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
一2,由f(0)=0,f
’
(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
一2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/cTr4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
2
(1)的定义域_______;(2)设则y=f(x2)+f(ex)的定义域是_______;(3)设函数的定义域是[-4,-π]∪[0,π],则g(x)的表达式为g(x)______。
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设A为m×n矩阵,且r(A)==r<n,其中.(Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解;(Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在区间[一3,0)上的表达式为f(x)=,则其正弦级数在点x=20处收敛于______.
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又(x0,y0)≠0,求证:(Ⅰ)(Ⅱ)曲面z=f(x,y)与柱面φ(x,y)=0的交线Γ在点P0(x0,y0,z
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式验证
求极限
随机试题
桂枝的功效是
锥体系统病损最确切的体征是
敏感度系数高,表示项目效益对该()。
【背景资料】某煤矿主要运输大巷,采用锚杆喷射混凝土支护,设计锚杆的间排距为800mm×800mm,锚杆抗拔力70kN,喷射混凝土的强度等级为C20,厚度120mm。施工过程中某检查点A的质量检测结果见表1。该巷道在3月份验收时分析检查
根据《票据法》的规定,下列各项中不属于票据行为的是()。
根据《道路运输条例》规定,客运经营者(),处1000元以上3000元以下的罚款;情节严重的,由原许可机关吊销道路运输经营许可证。
A、 B、 C、 D、 A第一套图形的俯视图都是圆,第二套图形的俯视图都是长为3个单位,宽为1个单位的长方形。故选A。
ThesingleroomofferedinsectionAwouldbesuitableforastudent______.
中国旧民主主义革命终结的标志是()
打开工作簿文件EXCEL.xlsx,将工作表sheet1的A1:E1单元格合并为一个单元格,内容水平居中,计算“合计”列的内容,将工作表命名为“科研经费使用情况表”。
最新回复
(
0
)