首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充分必要条件是
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充分必要条件是
admin
2018-07-31
31
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充分必要条件是
选项
A、存在一组不全为0的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0.
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关.
C、α
1
,α
2
,…,α
s
中存在一个向量,它不能用其余向量线性表出.
D、α
1
,α
2
,…,α
s
中任意一个向量都不能用其余向量线性表出.
答案
D
解析
由于α
1
,α
2
,…,α
s
线性相关的充分必要条件是该组中至少存在一个向量,它可以用该组中其余s一1个向量线性表出,而线性无关是线性相关的反面,由此立即知(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/Iwg4777K
0
考研数学一
相关试题推荐
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥∫abf(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
A.水B.盐酸C.胃蛋白酶原D.黏液E.内因子主细胞分泌的是
A.单纯疝囊高位结扎术B.Ferguson法C.McVay法D.Bassini法E.疝成形术男,26岁,患右腹股沟斜疝3年,应首先采用下列哪种手术方式
A.数字X线摄影B.直接X线摄影C.计算机X线摄影D.计算机断层成像E.数字断层成像CR的中文全称为
《建设工程工程量清单计价规范》中规定园林绿化工程的第一级编码为( )。
期货交易所根据期货市场发展的需要,设立期货投资者保障基金。()
甲保健啤酒总厂位于N省C市,是一个年产量不过40万吨的中小型啤酒企业。虽然该厂地处祖国西北,地理位置偏僻,经济条件和消费水平与东部地区相比差距较大,但这并没有制约企业的发展。该企业不因规模小而寻求与大型啤酒企业兼合、合作,而是坚持走内部发展之路。近年来,该
佛祖释迦牟尼的成道处是()。
文化是一个民族成为自己而不是别人的根,传承和振兴文化是一项责任和使命并存的任务,每个人都________。填入划横线部分最恰当的一项是:
对销售下列()自产货物实行免征增值税政策。
微分方程满足条件y(2)=0的特解是().
最新回复
(
0
)