首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
admin
2018-05-23
80
问题
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫
a
b
f(x)dx=(b-a)
f
’’
(ξ).
选项
答案
令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上三阶连续可导,取x
0
=[*],由泰勒公式得 F(a)=F(x
0
)+F
’
(x
0
)(a一x
0
)+[*](a一x
0
)
3
,ξ
1
∈(a,x
0
), F(b)=F(x
0
)+F
’
(x
0
)(b一x
0
)+[*](b一x
0
)
3
,ξ
2
∈(x
0
,b), 两式相减得F(b)一F(a)=F
’
(x
0
)(b一a)+[*][F
’’’
(ξ
1
)+F
’’’
(ξ
2
)],即 ∫
a
b
f(x)=(b一a)[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)], 因为f
’’
(x)在[a,b]上连续,所以存在ξ∈[ξ
1
,ξ
2
][*](a,b),使得 f
’’
(ξ)=[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)],从而 ∫
a
b
f(x)dx=(b一a)[*]=f
’’
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/J1g4777K
0
考研数学一
相关试题推荐
设总体X的概率密度为其中θ>0是未知参数,从总体X中抽取简单随机样本X1,X2,…,Xn,记=min(X1,X2,…,Xn).如果用作为θ的估计量,讨论它是否具有无偏性.
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
某种清漆的9个样品的干燥时间(小时)为:6.5,5.8,7,6.5,7,6.3,5.6,6.1,5.设干燥时间X~N(μ,σ2),求μ的置信度为0.95的置信区间,在(1)σ=0.6(小时);(2)σ未知,两种情况下作,(μ0.975=1.96,t0.97
已知随机变量X~N(1,32),Y~N(0,42),而(X,Y)服从二维正态分布且X与Y的相关系数求EZ和DZ;
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。求P{X=1|Z=0};
设随机变量X的概率密度为令随机变量求y的分布函数;
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱中任取3件产品放入乙箱后,求:从乙箱中任取一件产品是次品的概率.
(Ⅰ)证明如下所述的型洛必达(L’Hospital)法则:设②存在x0的某去心邻域时,f’(x)与g’(x)都存在,且g’(x)≠0;(Ⅱ)请举例说明:若条件③不成立,但仍可以存在.
设D={(x,y)|x2+y2>0},l是D内的任意一条逐段光滑的简单封闭曲线,则下列第二型曲线积分必有()
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是________
随机试题
简述程序设计语言的分类及其特点?
项目评估报告内容不包括()
己知某R进制数为2019,则R的取值不可能为______________。
下列关于语音和高保真全频带声音的叙述,错误的是()
肥厚型心肌病的非药物治疗措施有
限定性集合资产管理计划投资于业绩优良、成长性高、流动性强的股票等权益类证券以及股票型证券投资基金的资产,不得超过该计划资产净值的15%,并应当遵循分散投资风险的原则。()
“种瓜得瓜,种豆得豆”与“四季循环,昼夜更替”的共同点是()。
2002年6月,上海合作组织在圣彼得堡召开峰会,签署了重要的政治、法律文件,其中有
结合材料,回答问题:材料1党的十八届四中全会,是我们党历史上首次在中央全会上专题研究依法治国议题。全会提出,全面推进依法治国,总目标是建设中国特色社会主义法治体系,建设社会主义法治国家。这就是,在中国共产党领导下,坚持中国特色
调制解调器(Modem)的功能是()。
最新回复
(
0
)