首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
admin
2018-05-23
69
问题
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫
a
b
f(x)dx=(b-a)
f
’’
(ξ).
选项
答案
令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上三阶连续可导,取x
0
=[*],由泰勒公式得 F(a)=F(x
0
)+F
’
(x
0
)(a一x
0
)+[*](a一x
0
)
3
,ξ
1
∈(a,x
0
), F(b)=F(x
0
)+F
’
(x
0
)(b一x
0
)+[*](b一x
0
)
3
,ξ
2
∈(x
0
,b), 两式相减得F(b)一F(a)=F
’
(x
0
)(b一a)+[*][F
’’’
(ξ
1
)+F
’’’
(ξ
2
)],即 ∫
a
b
f(x)=(b一a)[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)], 因为f
’’
(x)在[a,b]上连续,所以存在ξ∈[ξ
1
,ξ
2
][*](a,b),使得 f
’’
(ξ)=[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)],从而 ∫
a
b
f(x)dx=(b一a)[*]=f
’’
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/J1g4777K
0
考研数学一
相关试题推荐
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a、b的值和正交矩阵P.
设随机变量X的概率分布为P{X=1)=P(X=2)=1/2,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2)。求EY.
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
已知随机变量X~N(1,32),Y~N(0,42),而(X,Y)服从二维正态分布且X与Y的相关系数问X与Z是否相互独立?为什么?
设一设备在任何长为T的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:相继两次故障之间的时间间隔T的概率分布;
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+2f(1)+3f(2)=6,f(3)=1,试证:必存在ξ∈(0,3),使f’(ξ)=0.
求极限
)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,l,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.(I)求a的值;(II)将β1,β2,β3用α1,α2,α3线性
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y"一6y’+9y=e3x,则y(x)=___________.
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
随机试题
根据以上情况可能的诊断本病应如何治疗
A.6个月B.1岁C.1~1.5岁D.2岁E.2~2.5岁
女性患者,23岁,最近恶心、呕吐、厌油腻,查体:肝肋下2cm,质软有压痛,肝颈静脉回流征阴性,最大可能是
患者,18岁。右颌下区肿痛7天,加剧3天,检查:体温39℃,一般情况差,右颌下皮肤红,皮温高,压痛明显,触有波动感,肿胀无明显界限。舌下肉阜无红肿,导管口无溢脓,右下第一磨牙残根,叩痛(++),X线片见根尖周X线透射区。最可能的诊断为
下列哪项检查最有意义如果该检查阳性,最应该采用的治疗方法是
在下列所述线路中,()必为关键线路。
税款征收措施包括()。
某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。问托运中损坏了多少箱玻璃?()
There’sasimplepremisebehindwhatLarryMyersdoesforaliving:Ifyoucansmellit,youcanfindit.Myersisthefound
•Youwillhearthreetelephoneconversationsormessages.•Writeoneortwowordsoranumberinthenumberedspacesonthenote
最新回复
(
0
)