首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
admin
2019-11-25
66
问题
设函数f(x)可导且0≤f’(x)≤
(k>0),对任意的x
n
,作x
n+1
=f(x
n
)(n=0,1,2,…),证明:
存在且满足方程f(x)=x.
选项
答案
x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=f’(ξ
n
)(x
n
-x
n-1
),因为f’(x)≥0,所以x
n+1
-x
n
与x
n
-x
n-1
同号,故{x
n
}单调. |x
n
|=|f(x
n-1
|=|f(x
1
)+[*]f’(x)dx| ≤|f(x
1
)|+|[*]f’(x)dx|≤|f(x
1
)|+[*]dx=|f(x
1
)|+πk, 即{x
n
}有界,于是[*]x
n
存在, 根据f(x)的可导性得f(x)处处连续,等式x
n+1
=f(x
n
)两边令n→∞,得 [*]x
n
=f([*]x
n
),原命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/J2D4777K
0
考研数学三
相关试题推荐
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
微分方程y"一y=ex+1的一个特解应具有形式(其中a,b为常数)()
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1)亏损的概率α;(2)一年获利润不少于40000
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足y’’(x)+p(x)y’(x)-q(x)y(x)=f(x),y(a)=y(b)=0,其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设在区间(一∞,+∞)内f(x)>0,且当忌为大于0的常数时有f(x+k)=,则在区间(一∞,+∞)内函数f(c)是()
设f(x)在点x0的某邻域内有定义,且f(x)在x0间断,则在点x0处必定间断的函数是()
函数试判定其在点(0,0)处的可微性。
求二元函数f(x,y)=x4+y4-2x2-2y2+4xy的极值.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.讨论f’(x)在(-∞,+∞)内的连续性.
随机试题
简述专利的基本含义及其特征。
公司2009年签订的购销合同应缴纳的印花税是()元。
在国际竞争演化的要素驱动阶段,企业竞争力的来源主要是本国的()。
甲股份有限公司(以下简称“甲公司”)为上市公司,其相关交易或事项如下。(1)经相关部门批准,甲公司于2015年1月1日按面值发行分期付息、到期一次还本的可转换公司债券200000万元,另支付发行费用3000万元,实际募集资金已存入银行专户。根据可转换公
简要介绍培训项目收费标准核算的方法。
出现下列的情况可能导致死锁的是()。
InOctober2002,GoldmanSachsandDeutscheBank(1)_____anewelectronicmarket(www.gs.com/econderivs)foreconomicindicest
(23)在实验阶段进行,它所依据的模块功能描述和内部细节以及测试方案应在(24)阶段完成,目的是发现编程错误。(25)所依据的模块说明书和测试方案应在(26)阶段完成,它能发现设计错误。(27)应在模拟的环境中进行强度测试的基础上进行,测试计划应在软件需求
希尔排序法属于哪一种类型的排序法______。
Easterisa【B1】______ofoverwhelmingjoy,thejoythat【B2】______life,orrather,thevictoryoflifeoverdeath.Butdoesithav
最新回复
(
0
)