首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f’"(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f’"(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
admin
2019-02-20
64
问题
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时
|f(x)|≤M
0
, |f’"(x)|≤M
3
,
其中M
0
,M
3
为非负常数,求证f"(x)在(0,+∞)上有界.
选项
答案
分别讨论x>1与0
0+[*]M
3
. 2)当0<x≤1时对f"(x)用拉格朗日中值定理,有 f"(x)=f"(x)-f"(1)+f"(1)=f’"(ξ)(x-1)+f"(1),其中ξ∈(x,1). 从而 |f"(x)|≤|f’"(ξ)||x-1|+|f"(1)|≤M
3
+|f"(1)| (x∈(0,1]). 综合即知f"(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/pGP4777K
0
考研数学三
相关试题推荐
设A,B都是三阶方阵,满足AB=A—B,若λ1,λ2,λ3是A的三个不同特征值,证明:(1)λ1≠一1(i=1,2,3);(2)存在可逆阵C,使CTAC,CTBC同时为对角矩阵.
设y=y(x)由方程ex+∫0ydt一ex+x=0确定,且y(0)=0,求y=y(x)的最小值.
设f(x)是连续函数,F(x)是f(x)的原函数,则
当a取下列哪个值时,函数f(x)=2x3一9x2+12x—a恰好有两个不同的零点?()
当x→0时,下列无穷小量中阶数最高的是().
设当x→0时,f(x)=ln(1+x2)-ln(1+sin2x)是x的n阶无穷小,则正整数n等于()
已知当x→0时,函数f(x)=3sinx-sin3x与cxk是等价无穷小,则k=_______,c=______.
某厂家生产的一种产品同时在两个市场上销售,售价分别为P1,P2,销售量分别为q1,q2,需求函数分别为q1=24一0.2p1,q2=10一0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
已知某企业的总收入函数为R=26x一2x2一4x3.总成本函数为C=8x+x3.其中x表示产品的产量,求利润函数.边际收入函数,边际成本函数,以及企业获得最大利润时的产量和最大利润.
设某商品需求量Q是价格p的单调减函数Q=Q(p),其需求弹性η=>0.(Ⅰ)设R为总收益函数,证明=Q(1—η);(Ⅱ)求p=6时总收益对价格的弹性,并说明其经济意义.
随机试题
2012年3月5日,统一俄罗斯党领导人、总理普京当选总统。这是他继2000年后第二次当选总统。()
女,25岁,因近一年来刷牙牙龈偶有出血就诊,检查:PD:3~4mm,个别牙有牙龈退缩约1~2mm,此患者最可能诊断为
下列各穴中,属足太阴脾经的是
( )占了工程费用的绝大部分,工程师应给予足够的重视。但这类支付的程序比较简单,一般通过签发期中支付证书支付进度款。
无权代理在被代理人追认前,相对人可以催告被代理人在法定期限内予以追认。该法定期限是()。
成语“草木皆兵”反映的历史事件是()。
电冰箱的问世引起了冰市场的崩溃,以前人们用冰来保鲜食物,现在电冰箱替代了冰的作用。同样道理,由于生物工程的成果,研究出能抵抗害虫的农作物,则会引起什么后果?以下哪项是上述问题的最好回答?()。
下列符合“低碳生活”做法的是:
()对于知识相当于分析对于()
为“部门信息“表增加一个新字段“人数”,编写满足如下要求的程序:根据“雇员信息”表中的“部门号”字段的值确定“部门信息”表的“人数”字段的值,即对“雇员信息”表中的记录按“部门号”归类。将“部门信息”表中的记录存储到ate表中(表结构与“部门信息”表完全相
最新回复
(
0
)