设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). (1)证明:fn(x)=∫0x(t)(x-t)n-1dt(n=1,2,…); (2)证明:fn(x)绝对收敛.

admin2018-01-23  55

问题 设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).
(1)证明:fn(x)=0x(t)(x-t)n-1dt(n=1,2,…);
(2)证明:fn(x)绝对收敛.

选项

答案(1)n=1时,f1(x)=∫0xf0(t)dt,等式成立; 设n=k时,fk(x)=[*]∫0xf0(t)(x-t)k-1dt, 则n=k+1时,fk+1(x)=∫0xfk(t)dt=∫0xdt∫0t[*]f0(u)(t-u)k-1du =[*]∫0xdu∫uxf0(u)(t-u)k-1dt=[*]∫0xf0(u)(x-u)kdu 由归纳法得fn(x)=[*]∫0xf0(t)(x-t)n-1dt(n=1,2,…). (2)对任意的x∈(-∞,+∞),f0(t)在[0,x]或[x,0]上连续,于是存在M>0(M与x 有关),使得|f0(t)|≤M(t∈[0,x]或t∈[x,0]),于是 |fn(x)|≤[*]|∫0x(x-t)n-1dt|=[*]|x|n 因为[*]收敛,根据比较审敛法知[*]绝对收敛.

解析
转载请注明原文地址:https://kaotiyun.com/show/JAX4777K
0

相关试题推荐
最新回复(0)