首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1,α1,α1为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α1,α3线性无关.
设A为n阶矩阵,α1,α1,α1为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α1,α3线性无关.
admin
2017-12-31
28
问题
设A为n阶矩阵,α
1
,α
1
,α
1
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
1
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
得(A-E)α
1
=0; 由Aα
1
=α
1
+α
2
得(A-E)α
2
=α
1
;由Aα
3
=α
2
+α
3
得(A-E) α
3
=α
2
, 令 k
1
α
1
+k
2
α
1
+k
3
α
3
=0, (1) (1)两边左乘A-E得 k
2
α
1
+k
3
α
2
=0, (2) (2)两边左乘A-E得k
3
α
1
=0,因为α
1
≠0,所以k
3
=0,代入(2),(1)得k
1
0,k
2
=0,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/JHX4777K
0
考研数学三
相关试题推荐
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a—t)dt。证明:F(ga)-2F(A)=f2(A)-f(0)f(2a).
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
设二次型f(x1,x2,x3)=ax12+ax22+(n一1)x23+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
设二次型f=x12+x22+x32+2αx1x2一2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β。
随机试题
重症渗出性多形性红斑的治疗一般不使用
洛托克驱动机构的结构组成有四个部分基本组件:()、限位器和扭矩开关、减速装置和整体启动器及相关的控制机构。
控制性给氧的浓度为()
对于粗大运动的发育不正确的是
可引起儿童牙釉质发育不良和牙齿着色变黄的药物是()。
斜拉桥斜拉索索力测定的方法一般多采用()。(检测员不考)
用任务驱动法开展“班级相框巧设计”教学,第一环节应该是()。
把核能看成可持续性资源,可能会很困难。与其他替代资源不同,核能长期为环境保护主义者所厌恶,主要是因为放射性废物储存问题。但是,核反应堆也是高效的电力之源,不排放任何污染气体,并且,就某些类型的反应堆而言,其设计能使废料减少到最低限度,基本能够防止反应堆熔毁
Therehasbeena______lackofcommunicationbetweentheunionandthemanagement.[2002]
A、Thewomantriestohaveaninterviewwiththeman.B、Theinterviewwilllastmorethantwohours.C、Themanstillhastimeto
最新回复
(
0
)