首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
admin
2018-02-07
46
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,+η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 且(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/JHk4777K
0
考研数学二
相关试题推荐
y=x
[*]
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
曲线y=(x-1)2(x-3)2的拐点个数为
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
随机试题
小儿病危重,其食指可显现为
烧伤患者,高热灼手,汗多气粗,口渴头痛烦躁不安,舌红绛苔黄,脉洪数。其证型是
关于犯罪形态,下列哪种说法是正确的?
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f’(x)>0,f’’(x)>0,则在(-∞,0)内必有()。
如果当前的证券价格不仅反映了历史价格信息和所有公开的价格信息,该市场属于()。
对于长文档,使用键盘快速移动光标至文件首的操作是()。
Whatrhetoricdeviceisusedinthesentence"Manyhandsmakelightwork"?
材料 近日,特拉维夫大学宣布该学校实验室3D打印出了一颗“心脏”,该心脏不仅具有外形,还有细胞、血管和其他支撑结构,甚至可以像心脏一样收缩,但长度只有2.5厘米。该实验团队负责人说:“与过去相比,这项研究成果的突破点在于,这不仅是一个外观打印的心脏,而
某班级53名学生的物理成绩平均分为83分,标准差为7分,测验的信度为0.51。若小叶考试成绩为81分,那么在0.05的显著水平上,其真分数应该介于什么范围?()
RocketRenaissanceTheEarofPrivateSpaceflightIsAbouttoStartBackgroundTwoyearsago,peoplewitnessedthefirstspa
最新回复
(
0
)