首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
admin
2018-02-07
49
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,+η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 且(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/JHk4777K
0
考研数学二
相关试题推荐
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
证明曲线有位于同一直线上的三个拐点.
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
某化工厂日产能力最高为1000吨,每天的生产总成本C(单位:元)是日产量x(单位:吨)的函数:(1)求当日产量为100吨时的边际成本;(2)求当日产量为100吨时的平均单位成本.
设矩阵A与B相似,且求a,b的值;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
函数y=x+2cosx在[0,π/2]上的最大值为________.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
Idon’tthinkit’snecessaryforustodiscussthisquestionanyfurther.()
计算机网络中为了防止黑客攻击服务器所采用的关键技术是_______技术。
胆囊无痛性肿大伴黄疸,见于()
为一位急性肺栓塞的患者进行身体评估,可获得的体征有
肘横纹(平肘尖)至腕掌(背)侧横纹的骨度分寸是
香港特别行政区的下列哪一项职务可由特区非永久性居民担任?(2008年试卷一第16题)
工业安装工程的特征是有()。
颜色为黄色的地面标志包括()。
关于转让旧房及建筑物土地增值税扣除项目的税务处理,下列说法正确的是()。
教育现代化的核心是()。
最新回复
(
0
)