首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
admin
2018-02-07
67
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,+η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 且(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/JHk4777K
0
考研数学二
相关试题推荐
[*]
设f(x)=2|x-a|(其中a为常数),求fˊ(x).
证明下列各题:
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
某厂生产某种商品,其年销售量为100万件,每批生产需增加准备费1000元,而每件的库存费为.0.05元.如果年销售率是均匀的,且上批销售完后,立即再生产下一批(此时商品库存数为批量的一半),问应分几批生产,能使生产准备费及库存费之和最小?
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
求f(x)的值域。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
鲁迅曾这样评价过曹操,“曹操是一个很有本事的人,至少是一个英雄。我虽不是曹操一党,但无论如何,总是非常佩服他”。下列典故中的主人公不是曹操的一项是()。
根据刘河间治疗痢疾的理论,里急后重症状显著者加用()
合同约定的履行义务为交付某财物,后经当事人协商改用另一财物作为履行义务的标的,并在更改后的财物交付后。合同关系消灭,合同法理论称这一现象为_______。
Evidencecameup______specificspeechsoundsarerecognizedbybabiesasyoungas6monthsold.
CSF中葡萄糖含量
假设检验中的第二类错误是指
患者男性,42岁。因“急性梗阻性化脓性胆管炎”急诊入院,患者寒战、高热,体温高达41℃,脉搏112次/分,血压85/65mmHg。患者经手术治疗,行T管引流。(假设条件)若T管引流胆汁过多,最可能的原因是
施工成本的计划值和实际值也是相对的,相对于()而言,施工成本规划的成本值是实际值。
根据我国现行立法及司法实践,侵权损害赔偿的原则主要有()。
黄河是我国第二大河,也是世界上屈指可数的明川。她从巴颜喀拉山北麓起步,接纳千溪百川,一路浩浩荡荡,奔腾东流,经青海、四川、甘肃、宁夏、内蒙古、侠西、山西、河南、山东等九个省区,注入浩瀚的大海,全长5464公里,流域面积75万多平方公里,像一条金色的巨龙。昂
最新回复
(
0
)