首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,+η*+ξn-r线性无关。
admin
2018-02-07
70
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,+η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 且(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/JHk4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
不等式的解集(用区间表示)为[].
证明函数y=sinx-x单调减少.
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
求函数的最大值和最小值。
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
不属颅脑平扫的适应证为
A.一级预防B.二级预防C.三级预防D.一级或者二级预防E.二级或者三级预防随时消毒是
A.B.C.D.E.B环连接位置在3位的是()。
A.治疗胃溃疡B.治疗胃酸过多C.保肝D.止吐E.利胆多潘立酮用于()。
有机磷农药中毒时,ChE(胆碱酯酶)活性增高。()
某患者食欲不振,消化不良,有腹水,呕血,腹壁浅静脉曲张出现海蛇头,则形成此症状的原因是()。
同一长度的压杆,截面积及材料均相同,仅两端支承条件不同,则()杆的临界力最小。
物业管理企业提供物业服务的项目,一般包括()。
学生或者其监护人知道学生有特异体质,或者患有特定疾病,但未告知学校的,学校已经履行了相应职责,行为并无不当。这时造成的学生伤害事故应该由()承担责任。
公安机关有法律赋予的权力和强大实力,坚持(),才能保证其正确运用。
最新回复
(
0
)