首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证 (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证 (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使
admin
2019-02-23
74
问题
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证
(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ε,使
选项
答案
证:将欲证的等式变形为f(ε)g〞(ε)-f〞(ε)g(ε)=0,由此可启发我们构造辅助函数φ(x)=f(x)gˊ(x)-fˊ(x)g(x). (1)用反证法.若存在c∈(a,b),使g(c)=0,对g(x)在[a,c]和[c,b]上应用罗尔定理,知存在ε
1
∈(a,c),ε
2
∈(c,d),使gˊ(ε
1
)=gˊ(ε
2
)=0. gˊ(x)再在[ε
1
,ε
2
]上应用罗尔定理,应存在ε
3
∈(ε
1
,ε
2
),使g〞(ε
3
)=0,这与条件g〞(x)≠0矛盾.故在(a,b)内g(x)≠0. (2)令φ(x)=f(x)gˊ(x)-fˊ(x)g(x),则φ(a)=φ(b)=0,由罗尔定理知,存在ε∈(a,b),使φˊ(ε)=0,即 fˊ(ε)gˊ(ε)+f(ε)g〞(ε)-f〞(ε)g(ε)-fˊ(ε)gˊ(ε)=0 即 f(ε)g〞(ε)=f〞(ε)g(ε) 因g(ε)≠0,g〞(ε)≠0,故得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XYj4777K
0
考研数学二
相关试题推荐
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
求微分方程y’’+y=x2+3+cosx的通解.
设A,B为三阶矩阵,满足AB+E=A2+B,E为三阶单位矩阵,又知A=.求矩阵B.
设f(x,y)二阶连续可偏导,g(x,y)=f(exy,x2+y2),且证明:g(x,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
设D={(x,y)|0≤x≤1,0≤y≤1),直线l:x+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求
极限().
若二次型2χ12+χ22+χ32+2χ1χ2+2tχ2χ3的秩为2,则t=_______.
设三阶方阵A与B相似,且|2E+A|=0.已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=__________。
设f(x)为非负连续函数,且满足f(x)∫0xf(x-t)dt=sin4x,求f(x)在上的平均值.
求下列幂级数的收敛域:
随机试题
【背景资料】某房屋建筑工程施工总承包二级企业,通过招标投标方式承建了城区A住宅楼工程,工程为框架一剪力墙结构,地上17层,地下1层,总建筑面积为16780m2。该工程采取施工总承包方式,合同约定工期20个月。工程中标后,施工企业负责人
糖蛋白的多肽链骨架上共价连接了一些寡糖链,其中常见的单糖有7种。下列单糖中在糖蛋白中不常见的单糖是
信用职能具体表现在()等方面。
人防地下室防烟楼梯间的门应采用:[2007—055]
中国入世以后对涉外税收政策调整的总方向是()。
下列投资产品中,一定要在交易所交易的有( )。Ⅰ.黄金期货合约Ⅱ.黄金远期合约Ⅲ.金块期权Ⅳ.黄金期货期权
下列选项中,作品与国别对应不正确的是()。
竹子对于()相当于兔子对于()
在以下操作系统中,不属于UNIX操作系统产品的是()。
Scientistshavetakenagiantleaptowardmakingpossiblethedreamofbuildingapowerfultelescopeonthemoonthatcouldwith
最新回复
(
0
)