首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: 当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: 当|ε|充分小时,A+εB仍是正定矩阵.
admin
2017-10-21
82
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
2
,…,λ
n
,记M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/JOH4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设n阶矩阵A与对角矩阵相似,则().
设A是m×n矩阵,若ATA=0,证明:A=0.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设方程组有解,则α1,α2,α3,α4满足的条件是_________.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT。
随机试题
试述谈判时提问的时机及要诀。
引起术后伤口裂开的原因有
工程施工质量不符合要求时,经返工重做或更换器具、设备的检验批应( )。
巴塞尔委员会正式发布的第三版巴塞尔协议(巴塞尔协议Ⅲ),确立了银行资本监管新标杆和新高度,使商业银行风险管理的模式发生了本质变化的时间为()
摩擦性失业主要是由()产生的。
头脑风暴法是由()首先提出。
在VisualFoxPro中,表的备注文件的扩展名是______。
ADULATION:
Navigationcomputers,nowsoldbymostcarmakers,cost$2000andup.Nosurprise,then,thattheyaremostoftenfoundinluxur
HollywoodForsakesHistoryforEventsA)OprahWinfreycallsBelovedtheblackequivalentofSchindler’sList.Tobesure,every
最新回复
(
0
)