首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2线性无关,向量组α1+b,α2+b线性相关,证明:向量b能由向量组α1,α2线性表示。
设向量组α1,α2线性无关,向量组α1+b,α2+b线性相关,证明:向量b能由向量组α1,α2线性表示。
admin
2017-12-29
73
问题
设向量组α
1
,α
2
线性无关,向量组α
1
+b,α
2
+b线性相关,证明:向量b能由向量组α
1
,α
2
线性表示。
选项
答案
因为α
1
,α
2
线性无关,α
1
+b,α
2
+b线性相关,所以b≠0,且存在不全为零的常数k
1
,k
2
,使 k
1
(α
1
+b)+k
2
(α
2
+b)=0,则有(k
1
+k
2
)b=一k
1
α
1
一k
2
α
2
。 又因为α
1
,α
2
线性无关,若k
1
α
1
+k
2
α
2
=0,则k
1
=k
2
=0,这与k
1
,k
2
不全为零矛盾,于是有k
1
α
1
+k
2
α
2
≠0,(k
1
+k
2
)b≠0。 综上k
1
+k
2
≠0,因此由(k
1
+k
2
)b=一kα
1
一k
2
α
2
得 [*]α
2
,k
1
,k
2
∈R,k
1
+k
2
≠0。
解析
转载请注明原文地址:https://kaotiyun.com/show/JQX4777K
0
考研数学三
相关试题推荐
以下4个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设(1)求证:若b>1,则发散;(2)当b=1时,试举出可能收敛也可能发散的例子.
A,B均是n阶矩阵,且AB—A+B.证明:A—E可逆,并求(A—E)-1.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设向量α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αTβ,求:A能否相似于对角阵,说明理由.
求不定积分
求极限
求级数的收敛域。
随机试题
A、Postingacommentonthehotel’swebpage.B、Stayinginthesamehotelnexttimehecomes.C、SigningupformembershipofShera
能够反映企业资金利用效率的是()
如果机体在一段时间内避免作外功,且体重不变,其消耗的能量最终都变成
对于腰椎间盘突出症,下列哪项是不正确的
关于肾性糖尿原因的叙述,正确的是
数控磨床(用于齿轮的磨削加工)
从聚合资源优势,贯彻实施企业发展战略和经营目标的角度,集权与分权相结合型财务管理体制显然是最具保障力的。()
“仲”“季”“叔”“伯”是我国古代对兄弟排行的次序,其中排行第四位的是()。
近来,针对韩国三星、LG等6家境外大型面板生产商的价格垄断,国家发改委开出3.53亿元的首张罚单,这也是我国迄今为止金额最高的价格违法罚单。然而,部分网友认为处罚的金额相对较低,仅为欧美针对液晶企业的反垄断罚单的1/20左右,吐槽罚金过低“不给力”。以下哪
学生很容易在作业本上看到教师用红笔写下的评语。这体现的知觉特性是()
最新回复
(
0
)