首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判定二次型f(x1,x2,x3)=x12+2x22+4x32-2x1x2+4x1x3+6x2x3的正定性。
判定二次型f(x1,x2,x3)=x12+2x22+4x32-2x1x2+4x1x3+6x2x3的正定性。
admin
2021-07-27
32
问题
判定二次型f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+4x
3
2
-2x
1
x
2
+4x
1
x
3
+6x
2
x
3
的正定性。
选项
答案
二次型矩阵为[*]正惯性指数法.用配方法化二次型为标准形.f(x
1
,x
2
,x
3
)=x
1
2
-2x
1
(x
2
-2x
3
)+(x
2
-2x
3
)
2
-(x
2
-2x
3
)
2
+2x
2
2
+4x
3
2
+6x
2
x
3
=(x
1
-x
2
+2x
3
)
2
+x
2
2
+10x
2
x
3
+25x
3
2
-25x
3
2
=(x
1
-x
2
+2x
3
)
2
+(x
2
+5x
3
)
2
-25x
3
2
.知二次型的正惯性指数为2,小于3,因此,该二次型非正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/JQy4777K
0
考研数学二
相关试题推荐
设f(χ)在点χ=χ0处可导,且f(χ0)=0,则f′(χ0)=0是|f(χ)|在χ0可导的()条件.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3,线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
n元实二次型正定的充分必要条件是()
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
随机试题
Itisplausibletoregardacollectionoflettersspanningyouthandoldageas(i)________ofautobiography:theprocessionofc
调整蜗轮铣削吃刀量时,应以()为切深参数起点。
企业在生产经营过程中要确立环境保护意识,从产品的设计、生产、营销、废弃物的处理方式,到产品消费过程中,都要突出强调环保理念和可持续发展,这是指【】
下列哪种疾病不由沙眼衣原体引起
对浅表和深部真菌感染均有较强作用的药物是
与胃痛关系密切的脏腑是
法律文化
期货交易涉及商品实物交割的,期货交易所还应当发布()。
【2013年山东事业单位.多选】下列属于有指导发现学习的是()。
阅读下列说明,针对项目的启动、计划制订和执行过程中存在的部分问题,根据要求回答问题1~问题3。[说明]2009年3月,系统集成商PH公司承担了某事业单位电子政务二期工程,合同额为650万元,全部工期预计5个月。该项目由PH公司总经理庞总主管
最新回复
(
0
)