首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量尼不可由α1,α2,α3线性表示,则对任意常数k,必有( ).
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量尼不可由α1,α2,α3线性表示,则对任意常数k,必有( ).
admin
2019-07-10
53
问题
设n维列向量α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,向量尼不可由α
1
,α
2
,α
3
线性表示,则对任意常数k,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
设有一组数字λ
1
,λ
2
,λ
3
,λ
4
,满足λ
1
α
1
+λ
2
α
2
+λ
3
α
3
+λ
4
(kβ
1
+β
2
)=0,
若λ
4
=0,则有条件λ
1
=λ
2
=λ
3
=0,从而推出α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
若λ
4
≠0,则kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表示,而β
1
可由α
1
,α
2
,α
3
线性表示,故β
2
也可由α
1
,α
2
,α
3
线性表示,矛盾,所以,λ
4
=0,从而A正确.对于其余三个选项,也可用排除法.
当k=0时,可排除B、C;当k=1时,可排除D.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/JWJ4777K
0
考研数学三
相关试题推荐
设f(x)连续,且证明:若f(x)单调不增,则F(x)单调不减.
[*]
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|___________.
证明:当x>0时,ex一1>(1+x)ln(1+x).
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y"一6y′+9y=e3x,则y(x)=___________.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的求全部融化需要的时间.
(2005年)当a取值为()时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点。
一个班内有20位同学都想去参观一个展览会,但只有3张参观票,大家同意通过这20位同学抽签决定3张票的归属.计算下列事件的概率:(Ⅰ)“第二人抽到票”的概率p1;(Ⅱ)“第二人才抽到票”的概率p2;(Ⅲ)“第一人宣布抽到了票,第二人又抽到票
两人相约于晚7点到8点间在某处会面,到达者等足20分钟便立即离去.设两人的到达时刻在7点到8点间都是随机且等可能的,则两人能会面的概率p=___________.
设δ>0,f(x)在(一δ,δ)内恒有f"(x)>0,且|f(x)|≤x2,记I=∫-δδf(x)dx,则有().
随机试题
农业产业一体化经营是第二次世界大战后发达国家农业走向现代化的重要组织形式,()不是主要的农业产业一体化经营形式。
什么叫裂纹?常见的裂纹有哪些?裂纹有什么危害?
女性,30岁,颜面和双下肢水肿伴少尿半年,查血压140/95mmHg,尿蛋白(+++),红细胞(++)/Hp,血Hb105g/L,胆固醇10.2mmol/L,白蛋白21g/L,补体C3下降,血Cr145μmol/L。本例最可能的诊断为
企业月度财务会计报告的保管期限为()。
某服装加工厂与外商签订了一份加工服装出口合同,该厂报关员到海关办理该批合同备案手续(纸质手册)时,应向海关提交的单证资料包括;
收入汇缴账户除向其基本存款账户或预算外资金财政专用存款户划缴款项外,只收不付,不得支取现金。()
下列关于中外合资经营企业组织机构的表述中,不符合规定的是()。
下列清盛京三陵的名称及墓主人对应正确的是()。
简述学前儿童心理发展的趋势。
某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是()。
最新回复
(
0
)