首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
admin
2018-07-27
48
问题
设λ
1
、λ
n
分别为n阶实对称矩阵的最小、最大特征值,X
1
,X
n
分别为对应于λ
1
、λ
n
的特征向量,记
f(X)=X
T
AX/X
T
X,X∈R
n
,X≠0
证明:二次型f(X)=X
T
AX在X
T
X=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
选项
答案
设λ
n
为A的最大特征值,X
n
为对应的单位特征向量,即有AX
n
=λ
n
X
n
,X
n
T
X
n
=1.在X
T
X=1条件下,可知,X
T
AX≤λ
n
,又X
n
T
AX
n
=X
n
T
λ
n
X
n
=λ
n
X
n
T
X
n
=λ
n
,故[*]X
T
AX=λ
n
=f(X
n
).类似可证[*]X
T
Ax=λ
1
=f(X
1
),其中λ
1
为A的最小特征值,X
1
为对应的单位特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/JXW4777K
0
考研数学三
相关试题推荐
设A,B均是n阶矩阵,下列命题中正确的是
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
随机试题
患儿男性,9岁,主诉“肢体无力10天”。患儿出现双下肢无力,行走速度较前减慢,不能跑。3天前出现双手握笔无力,可行走,速度明显减慢,蹲起费力,无尿便障碍及感觉异常,无发热、头痛、抽搐。患儿既往体健,发育正常。患儿病史及查体可出现的阳性结果中可能性最小的
引起糖尿病的原因有
下列对解热镇痛抗炎药正确的叙述是
下列选项中属于消防工作的原则的是()。
填写票据金额时¥10068元应写成()。
20世纪60年代初期,在美国发起课程改革运动的著名心理学家是()。
人类历史上第一次成功的社会主义革命是()
中国共产党执政后的最大危险是()。
Ecologyisthescienceofhowlivingcreaturesandplantsexisttogetheranddependoneachotherandonthelocalenvironment.
A、HesuggestedTomnottowritethenovelanylonger.B、HesuggestedTomtogotocinemaeverynight.C、HesuggestedTomtofoll
最新回复
(
0
)