首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
admin
2020-03-16
46
问题
二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a-1)x
3
2
+2x
1
x
3
-2x
2
x
3
.
①求f(x
1
,x
2
,x
3
)的矩阵的特征值.
②如果f(x
1
,x
2
,x
3
)的规范形为y
1
2
+y
2
2
,求a.
选项
答案
①f(x
1
,x
2
,x
3
)的矩阵为 [*] 记B=[*].则A=B+aE. 求出B的特征多项式|λE-B|=λ
3
+λ
2
-2λ=λ(λ+2)(λ-1),B的特征值为-2,0,1,于是A的特征值为a-2,a,a+1. ②因为f(x
1
,x
2
,x
3
)的规范形为y
2
+y
2
时,所以A的正惯性指数为2,负惯性指数为0,于是A的特征值2个正,1个0,因此a=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jb84777K
0
考研数学二
相关试题推荐
验证函数在[0,2]上满足拉格朗日定理.
求函数z=x2+2y2-x2y2在D={(x,y)|x2+y2≤4,y≥0}上的最小值与最大值.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
设有微分方程y’-2y=ψ(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,满足条件y(0)=0.
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
[2005年]确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
[2011年]已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分I=xyf″xy(x,y)dxdy.
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
随机试题
EveryyearjustafterChristmastheJanuarySalesstart.Alltheshopsreducetheirpricesandfortwoweeks,theyarefullofp
消化性溃疡患者疼痛的特点有
A.原发性腹膜炎B.盆腔脓肿C.继发性腹膜炎D.出血性腹膜炎E.慢性腹膜炎阑尾切除术后8天,下腹坠胀不适,每天排便20次左右,大便带有黏液。直肠指检:直肠前壁可扪及触痛性肿块。可诊断为
关于睡眠呼吸暂停综合征叙述不正确的是
病人需吸入的氧气浓度为45%,氧流量应调节为每分钟
可以将暖气管、煤气管、自来水管道作为保护线使用。()
在不涉及补价的情况下,下列各项交易事项中,属于非货币性资产交换的是()。
世界观是()。
MIS从职能结构上进行纵向划分时,可分成高层战略层、中层管理层和基层()。
A、 B、 C、 D、 D应该仔细观察一位女士正坐在椅子上读报纸以及桌子上放着的物品和周围的环境。
最新回复
(
0
)