首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
admin
2020-03-16
55
问题
二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a-1)x
3
2
+2x
1
x
3
-2x
2
x
3
.
①求f(x
1
,x
2
,x
3
)的矩阵的特征值.
②如果f(x
1
,x
2
,x
3
)的规范形为y
1
2
+y
2
2
,求a.
选项
答案
①f(x
1
,x
2
,x
3
)的矩阵为 [*] 记B=[*].则A=B+aE. 求出B的特征多项式|λE-B|=λ
3
+λ
2
-2λ=λ(λ+2)(λ-1),B的特征值为-2,0,1,于是A的特征值为a-2,a,a+1. ②因为f(x
1
,x
2
,x
3
)的规范形为y
2
+y
2
时,所以A的正惯性指数为2,负惯性指数为0,于是A的特征值2个正,1个0,因此a=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jb84777K
0
考研数学二
相关试题推荐
验证函数在[0,2]上满足拉格朗日定理.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretanξ)f’(ξ)=一1.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny一sinx),求
计算二重积分:||χ+y|-2|dχdy,其中D:0≤χ≤2,-2≤y≤2.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且,求[img][/img]
随机试题
集团化经营
设区域D由x2+y2≤1,x≥0,y≥0所围成.求
Mr.Brownworkedatabigcompany.Hewenttoworkby【21】.Onedaywhenhewasstandingatthebus-stop,henoticedcarsgo【22】.
患者,女,35岁。因不孕就诊,CT扫描子宫增大呈分叶状,表面光滑,子宫肌壁内实性略、低密度影,有钙化,宫腔受压移位。考虑为
属于强制检定范围的计量器具,未按规定申请检定或者检定不合格继续使用的,将
苯与Cl2在光催化作用下,生成氯苯的反应是()。
根据《公司法》的规定,股份有限公司股东大会作出的下列决议中,必须经出席会议的股东所持表决权三分之二以上通过的是()。
根据股票供求双方在价格决定中的作用,可以将各个国家和地区的新股发行方式分为()。
WithAirbus’sgiantA380airlineraboutintotaketotheskies,youmightthinkplanescouldnotgetmuchbigger—andyouwoul
Whatoccursonceineverymonth,twiceineverymoment,butnotonceinathousandyears?
最新回复
(
0
)