首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
admin
2019-05-10
37
问题
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=
(k为常数),且AB=O.求线性方程组AX=0的通解.
选项
答案
为求AX=0的通解,需求其基础解系,为此需求出秩(A),这就必然要对k进行讨论,确定基础解系所含解向量的个数后,可从B的列向量中求出基础解系. 由题设AB=O可得出两种思路:一是秩(A)+秩(B)≤n;另一是B的列向量都是AX=0的解向量,据此可得到下列解法: (1)如k≠9,则秩(B)=2,因而由秩(A)+秩(B)≤3得到秩(A)≤1.显然秩(A)≥1,故秩(A)=1,于是AX=0的一个基础解系含n一秩(A)=3—1=2个解向量.由AB=0知α
1
=[1,2,3]
T
,α
2
=[3,6,k]
T
为AX=0的两个线性无关的解向量,于是其通解为k
1
α
1
+k
2
α
2
=k
1
[1,2,3]
T
+k
2
[3,6,k]
T
,k
1
,k
2
为任意两个常数. (2)如k=9,则秩(B)=1,于是秩(A)≤3一秩(B)=2.因而秩(A)=1或秩(A)=2. 当秩(A)=1时,则A的第2,3两行均与第1行成比例,故AX=0的等价方程组为ax
1
+bx
2
+cx
3
=0,不妨设c≠0,则 [*] 其一个基础解系含2个解向量,即β
1
=[1,0,-a/c]
T
,β
2
=[0,1,一b/c]
T
.为方便计,不妨取为β
1
=[c,0,一a]
T
,β
2
=[0,c,一b]
T
,其通解为l
1
β
1
+l
2
β
2
,l
1
,l
2
为任意常数. 当秩(A)=2时,则AX=0的一个基础解系只含n一秩(A)=3—2=1个解向量.此解向量γ可取B中任意一个列向量,不妨令γ=[1,2,3]
T
,则其通解为tγ,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CVV4777K
0
考研数学二
相关试题推荐
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
求不定积分∫cos(lnχ)dχ.
设F(χ)为连续函数,且满足∫01f(χt)dt=f(χ)+χsinχ,则f(χ)=_______.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设z=z(χ,y)是由f(y-χ,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
求微分方程yy〞=y′2满足初始条件y(0)=y′(0)=1的特解.
设函数f(x)连续,若F(μ,ν)=dxdy,其中区域Dμν为图1—4—1中阴影部分,则=()
[2018年]设函数z=z(x,y)由方程lnz+ez-1=xy确定,则=________.
随机试题
物力资源的节约是建设节约型社会和节约型企业的重要方面,同时也是贯彻物力资源战略的重大举措。
《蒙娜丽莎》是意大利文艺复兴时期著名画家______的油画作品。()
A出现黄疸B出现发绀C血肌酐升高D突发性低血压E消化道出血胃肠功能衰竭时有
体内缺铁初期最早最可靠的诊断依据是
A.局域网(LAN)和广域网(WAN)B.星型、总线型和环型C.主机、显示器、键盘、鼠标D.运算器和控制器E.系统软件和应用软件计算机网络按其分布的地理范围分为
流行病学医师应首先树立的观点是
下列能够促进胃液分泌的因素是
可用于二级公路路面基层的有()。【2013年真题】
2012年3月,甲县财政局到本县A国有企业进行检查.发现A企业在2011年度有如下行为:(1)2011年8月企业实现利润500万元,为了调整利润以使企业少缴企业所得税.企业会计人员张三将固定资产的折旧方法由直线法改为双倍余额递减法。
盈利能力监管指标不包括()。
最新回复
(
0
)