首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
admin
2016-09-12
90
问题
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
选项
答案
由泰勒公式得 f(-1)=f(0)+f’(0)(-1-0)+[*](-1-0)
2
,ξ
1
∈(-1,0), f(1)=f(0)+f’(0)(1-0)+[*](1-0)
3
,ξ
2
∈(0,1), [*] 两式相减得f’’’(ξ
1
)+f’’’(ξ
2
)=6. 因为f(x)在[-1,1]上三阶连续可导,所以f’’’(x)在[ξ
1
,ξ
2
]上连续,由连续函数最值定理,f’’’(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故2m≤f’’’(ξ
1
)+f’’’(ξ
2
)≤2M,即m≤3≤M. 由闭区间上连续函数介值定理,存在ξ∈[ξ
1
,ξ
2
][*](-1,1),使得f’’’(ξ)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jht4777K
0
考研数学二
相关试题推荐
[*]
证明:奇次多项式p(x)=a0x2n+1+a1x2n+….+a2n+1(a0≠0)至少存在一个零点。
广义积分=________。
证明:当x≠y时,.
设f(x)在[a,b]上连续,在(a,b)内可导,证明:在(a,b)内存在点ξ,使得bea-aeb=(b-a)ea+b
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
有两个级数,根据已知条件进行作答。若两个级数:两个都发散,其和如何?
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
根据《建设工程安全生产管理条例》规定,工程监理单位应当审查施工组织设计中的安全技术措施或专项施工方案是否符合工程建设强制性标准和()标准。
领导者树立“无功即是过”的观念,要求领导绩效考评必须坚持【】
不属于液化性坏死的是
可以不绘制城市电网系统现状图的情况是()。
临时中央政治局迁到中央根据地后,全面推行“左”倾冒险主义错误,在福建开展的运动是()。
科学家一直认为大脑中的“语言中心”让我们有别于人类的血缘近亲——猴子。但是,最近一项新研究发现,与人类语言能力有关的大脑区域所在位置与科学家此前认为的截然不同。这个控制语言能力的区域距离大脑中央更近,比此前认为的近了3厘米。这意味着,人类大脑与猴子大脑的相
在面向对象方法中,实现信息隐蔽是依靠______。
设有一个已按各元素的值排好序的顺序表(长度大于2),现分别用顺序查找法和二分查找法查找与给定值k相等的元素,比较的次数分别是s和b,在查找不成功情况下s和b的关系是
A、Becausehecan’tfindanidealdate.B、Becauseheistoocommonaperson.C、Becausehehasfailedtorealizehisdreams.D、Bec
Advertisingisaformofselling.Forthousandsofyearstherehavebeenindividualswhohavetriedto【C1】______otherstobuyth
最新回复
(
0
)