首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解. (I)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解. (I)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0
admin
2019-06-06
79
问题
已知y
1
*
(x)=xe
-x
+e
-2x
,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.
(I)求这个方程和它的通解;
(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求∫
0
+∞
y(x)dx.
选项
答案
(I)由线性方程解的叠加原理→ y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重根λ=一2相应的特征方程为 (λ+2)
2
=0,即λ
2
+4λ+4=0. 原方程为 y’’+4y’+4y=f(x). ① 由于y
*
(x)=xe
-x
是它的特解,求导得 y
*
’(x)=e
-x
(1一x), y
x
’’(x)=e
-x
(x一2). 代入方程①得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x) → f(x)=(x+2)e
-x
→原方程为y’’+4y’+4y=(x+2)e
-x
,其通解为 y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数. (Ⅱ)[*]C
1
,C
2
,方程的[*]解y(x)均有 [*] 不必由初值来定C
1
,C
2
,直接将方程两边积分得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JqV4777K
0
考研数学二
相关试题推荐
=K,求(a≠0).
求I=dχdY,其中D是由抛物线y2=χ,直线χ=0,y=1所同成.
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f〞(χ)|≤.
设矩阵A的伴随矩阵且ABA一1=BA一1+3E,其中E为4阶单位矩阵,求矩阵B.
设f(x)有二阶连续导数,且f(0)=0,f’(0)=一1,已知曲线积分∫L[xe2x-6f(x)]sinydx一[5f(x)-f’(x)]cosydy与积分路径无关,求f(x).
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。证明F’(x)单调增加;
设f(x)为可导函数,且满足条件=一1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
微分方程ydx+(x一3y2)dy=0,x>0满足条件y|x=1=1的特解为_________。
对二元函数z=f(x,y),下列结论正确的是().
随机试题
A.复方大承气汤B.小承气汤C.增液承气汤D.甘遂通结汤E.麻子仁丸治疗肠梗阻水结湿阻型方选
患者,男,26岁。喘咳3年,每至春天春暖花开时哮喘发作,每伴少量黄稠痰,舌红苔黄,脉弦滑。常以麻黄、杏仁、石膏配伍
子宫脱垂最主要的病因是
现有95%乙醇500ml,要配制70%乙醇,需加入灭菌蒸馏水约
先在洞室开挖一个小导洞,采用锚杆支护和预灌浆方法对围岩进行加固,然后进行隧洞扩大开挖的方式是()。
在我国刑法中,共同犯罪人的种类分为______。
一家企业生产民用家具,在一批货发出后,发现有一张桌子少漆了一遍。经查找。这张桌子已经被顾客买走了。于是厂方便通过电台连续广播了半个月。寻找那位买主。没想到。这一举措没找到买主,却引来了12家商场愿意包销该厂产品。之所以会出现这种出乎意料的结果关键在于该厂的
[*]
分析车辆的状态和事件,指出图1中的(1)、(2)、(3)、(4)分别是什么?指出UML中活动图的含义,并说明活动图和状态图的区别与联系。
Lastmonth,thepublicaddresssystematEarl’sCourtsubwaystationinLondonwasorderedtogetthenoisedown.Passengers,it
最新回复
(
0
)