首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解. (I)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解. (I)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0
admin
2019-06-06
53
问题
已知y
1
*
(x)=xe
-x
+e
-2x
,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.
(I)求这个方程和它的通解;
(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求∫
0
+∞
y(x)dx.
选项
答案
(I)由线性方程解的叠加原理→ y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重根λ=一2相应的特征方程为 (λ+2)
2
=0,即λ
2
+4λ+4=0. 原方程为 y’’+4y’+4y=f(x). ① 由于y
*
(x)=xe
-x
是它的特解,求导得 y
*
’(x)=e
-x
(1一x), y
x
’’(x)=e
-x
(x一2). 代入方程①得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x) → f(x)=(x+2)e
-x
→原方程为y’’+4y’+4y=(x+2)e
-x
,其通解为 y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数. (Ⅱ)[*]C
1
,C
2
,方程的[*]解y(x)均有 [*] 不必由初值来定C
1
,C
2
,直接将方程两边积分得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JqV4777K
0
考研数学二
相关试题推荐
求I=,其中D为y=,y=χ及χ=0所同成区域.
设X和Y是相互独立的且均服从正态分布N(0,)的随机变量,求Z=|X—Y|的数学期望。
设函数f(x)在[0,1]上连续,(0,1)内可导,且3f(x)dx=f(0),证明:在(0,1)内存在一点f,使f’(C)=0.
计算不定积分
设向量组α1=试问:当a,b,c满足什么条件时β可由α1,α2,α3线性表出,且表示唯一;
已知二维随机变量(X,Y)的概率密度为f(x,y)=求(X,Y)的联合分布函数.
已知A是m×n矩阵,m<n证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
对二元函数z=f(x,y),下列结论正确的是().
(07年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
随机试题
哪项不是致病因子中致病能力的决定因素
现场急救火焰烧伤时哪些措施错误
X线检查诊断的结果,基本上都是肯定性诊断。
治疗肾虚型牙痛,除取主穴外,还应加()
学生的社会支持网络来自()等系统。
下列有关制定劳动定额的要求,表述不正确的是()。
以下资料,回答81-85题外出人口中大专及以上程度的人口占到了:
2007年3月27日,北京奥组委在首都博物馆隆重发布了2008年奥运会奖牌式样。奖牌背面为()。
A(Suchanextravagance)B(merelytoprovide)comfortispeculiarlyAmericaandC(strikingatoddswith)alltherecentrhetoric
Don’tworry,behappyand,accordingtoanewresearch,youwillalsobehealthy.Itisestimatedthatoverthecourseofon
最新回复
(
0
)