首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量 且P{|X|≠|Y|}=1。 (Ⅰ)求X与Y的联合分布律,并讨论X与Y的独立性; (Ⅱ)令U=X+Y,V=X—Y,讨论U与Y的独立性。
设随机变量 且P{|X|≠|Y|}=1。 (Ⅰ)求X与Y的联合分布律,并讨论X与Y的独立性; (Ⅱ)令U=X+Y,V=X—Y,讨论U与Y的独立性。
admin
2018-01-12
50
问题
设随机变量
且P{|X|≠|Y|}=1。
(Ⅰ)求X与Y的联合分布律,并讨论X与Y的独立性;
(Ⅱ)令U=X+Y,V=X—Y,讨论U与Y的独立性。
选项
答案
(Ⅰ)由P{|X|≠|Y|}=1知,P{|X|=|Y|}=0。由此可得X与Y的联合分布律为 [*] 因为P{X=一1,Y=一1}≠P{X=一1}P{Y=一1},所以X与Y不独立。 (Ⅱ)由(X,Y)的联合分布律知 P{U=V=一1}=P{X=一1,Y=0}=[*] P{U=一1,V=1}=P{X=0,Y=一1}=[*] P{U=1,V=一1}=P{X=0,Y=1}=[*] P{U=V=1}=P{X=1,Y=0}=[*] 所以U与V的联合分布律与边缘分布律为 [*] 即可验证U与V独立。
解析
转载请注明原文地址:https://kaotiyun.com/show/JtX4777K
0
考研数学三
相关试题推荐
同时抛掷三枚匀称的硬币,正面和反面都出现的概率为()
设总体X的概率密度为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果则当常数c=_________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布.
为了减少比赛场次,把20个球队任意分成两组(每组10队)进行比赛,求最强的两队被分在不同组内的概率.
已知随机变量X的概率密度为f(x)=一∞<x<+∞,则D(X2)=_________.
设随机变量X和Y均服从且D(X+Y)=1,则X与Y的相关系数ρ=_____
设A为三阶矩阵,有三个不同特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3.(1)证明:β不是A的特征向量;(2)β,Aβ,A2β线性无关;(3)若A3β=Aβ,计算行列式|2A+3E|.
设平区域D由直线x=3y,y=3y及x+y=8围成,计算.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,fˊx(a,b)=0,fˊy(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
随机试题
在VPN的具体实现方式中,通过在公网上开出各种隧道,模拟专线来建立的VPN称为()
阿米巴痢疾患者行保留灌肠时,采取右侧卧位的目的是
热压灭菌法温度(蒸汽表压)与时间的关系:126℃(139kPa)需多长时间
用于治疗小儿遗尿症兴奋呼吸中枢作用比尼可刹米强100倍,苏醒率可达90%.~95%.
属于五行中"木"的是
患者女,50岁,因呼吸衰竭入院。(假设条件)若通气过度,患者可表现为
[2008年,第88题]如图6.2-6所示,一倒置U形管,上部为油,其密度ρo1=800kg/m3,用来测定水管中的A点流速μ,若读数△h=200mm,则该点流速μA为()。
阅读文本材料和具体要求,完成以下问题。雨霖铃寒蝉凄切,对长亭晚,骤雨初歇。都门帐饮无绪,留恋处,兰舟催发。执手相看泪眼,竞无语凝噎。念去去,千里烟波,
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律.分类正确的一项是:
Therearethreekindsofgoals:short-term,medium-rangeandlong-termgoals.Short-rangegoalsarethosethatusuallydealwith
最新回复
(
0
)