首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. 求常数a;
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. 求常数a;
admin
2019-04-22
49
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.
求常数a;
选项
答案
因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量,故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关,即[*]=0,解得a=6.
解析
转载请注明原文地址:https://kaotiyun.com/show/JxV4777K
0
考研数学二
相关试题推荐
设f(x)=∫01|x-y|sin,求f"(x).
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个
设A=,求A的特征值,并证明A不可以对角化.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
证明:r(A+B)≤r(A)+r(B).
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
随机试题
一般情况下补体结合试验只是用来检测
产妇,29岁,顺产后3天,主诉阵发性不规律腹痛,哺乳时腹痛明显,检查:体温36.7℃,子宫底于脐下3横指,无压痛,双侧宫旁压痛(一),恶露血性,量不多,无臭味。该产妇最可能的情况是
A、不小于5厘米B、不小于10厘米C、不小于20厘米D、不小于30厘米与地面间距
()通过计算资产的周转速度来反映公司控制和运用资产的能力,进而估算经营过程中所需的资金量。
关于内部劳动力市场,说法正确的是()。
《威尼斯商人》:莎士比亚
A、 B、 C、 D、 B组合后的图形中黑球个数是2,小黑色方块个数是1,只有B符合要求。
已知数列{xn},其中-π/2≤xn≤π/2,则().
InterpersonalRelationshipsInthelast25yearswehavewitnessedanimpressivegrowthinourknowledgeaboutemotionsande
A、Thisyear.B、LastDecemberC、LastyearA
最新回复
(
0
)