首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f′(ξ)=1; (2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f′(ξ)=1; (2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
admin
2019-08-12
94
问题
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:
(1)存在ξ∈(0,1),使得f′(ξ)=1;
(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
选项
答案
(1)令h(χ)=f(χ)-χ, 因为f(χ)在[-1,1]上为奇函数,所以f(0)=0, 从而h(0)=0,h(1)=0, 由罗尔定理,存在ξ∈(0,1),使得h′(ξ)=0, 而h′(χ)=f′(χ)-1,故ξ∈(0,1),使得f′(ξ)=1. (2)令φ(χ)=e
χ
[f′(χ)-1], 因为f(χ)为奇函数,所以f′(χ)为偶函数,由f′(ξ)=1得f′(-ξ)=1. 因为φ(-ξ)=φ(ξ),所以存在η∈(-ξ,ξ)[*](-1,1),使得φ′(η)=0, 而φ′(χ)=e
χ
[f〞(χ)+f′(χ)-1]且e
χ
≠0, 故f〞(η)+f′(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/K0N4777K
0
考研数学二
相关试题推荐
求极限
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βa线性表示,则
(2004年)设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为
(13)设A=,当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的曲线积分∫L(1+y3)dx+(2x+y)dy的值最小.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续;
确定常数a和b的值,使f(χ)=χ-(a+b)sinχ当χ→0时是χ的5阶无穷小量.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
求u=x2+y2+z2在约束条件,下的最小值和最大值.
随机试题
酸中毒对微循环的影响为
依照《中华人民共和国广告法》,不得做广告的药品是
请回答有关水泥混凝土强度现场测试方法的问题。回弹仪有()情况之一时,需进行保养。
统计调查误差的两个主要控制途径,除控制代表性误差外,还需控制()。
根据以下图形的规律,问号处应填入的是()。
关于房地产中介服务机构设立的条件,说法错误的是()
四面边声连角起,千嶂里,_________。(范仲淹《渔家傲.秋思》
习近平同志提出的“四个全面”战略布局中,除了全面建成小康社会、全面深化改革和全面依法治国外,还有一项是()。
国家主席胡锦涛在联合国成立60周年首脑会议圆桌会议上,就联合国改革问题提出的一些看法包括
PreciousAirlinesFrequentFlierProgramPreciousAirlinesisproudtopresentourworldwidefreque
最新回复
(
0
)