首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=,证明:存在ε∈(0,2),使得f"’(ε)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=,证明:存在ε∈(0,2),使得f"’(ε)=2.
admin
2019-09-23
32
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=
,证明:存在ε∈(0,2),使得f"’(ε)=2.
选项
答案
方法一: 先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=5/3,P(1)=f(1). 则[*] 令g(x)=f(x)-P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
),使得g"(d
1
)=g"(d
2
)=0,再由罗尔定理,存在ε∈(d
1
,d
2
)[*](0,2),使得g"’(ε)=0,而g"’(x)=f"’(x)-2,所以f"’(ε)=2. 方法二: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/K1A4777K
0
考研数学二
相关试题推荐
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在cE(0,1),使得f(C)=1-2c;
设幂级数的系数满足a0=2,nan=an-1+n—1,n=1,2,…,求此幂级数的和函数S(x),其中x∈(一1,1).
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
设曲线L位于xOy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A.已知求L的方程.
设曲线y=y(χ)上点(χ,y)处的切线垂直于此点与原点的连线,求曲线y=y(χ)的方程.
求函数的单调区间和极值,以及该函数图形的渐近线。
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y(x)满足的微分方程和初始条件.
若函数其中f是可微函数,且则函数G(x,y)=()
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“P≥Q”表示可由性质P推出性质Q
随机试题
患者,女,42岁。乳癌根治术并化疗。出院时对预防复发最重要的指导是
半隐框玻璃幕墙的玻璃板块在经过( )和质量检验合格后,方可运输到现场。
乙股份有限公司(以下简称乙公司),属于增值税一般纳税人,适用的增值税税率为17%。乙公司2011年至2013年与固定资产有关的业务资料如下:(1)2011年12月1日,乙公司购入一条需要安装的生产线,取得的增值税专用发票上注明的生产线购买价款为1000
根据《中华人民共和国劳动争议调解仲裁法》的规定,劳动争议申请仲裁的时效期间为1年,劳动仲裁的时效期间从劳动合同订立之日起计算。()
材料:小叶在某节课上将自己用纸折的青蛙放在课桌上玩了起来,嘴里发出“呱呱”的声音。任课老师受到干扰非常生气,当着全班同学的面,严厉地批评了他。结果第二天小叶带来了一只小狗,接着出现了麻雀、老鼠、兔子……班主任得知小叶的情况后,通过仔细观
Itisnecessaryforustotrytowinforeignaidand,inparticular,tolearnallthatisadvancedandbeneficialfromothercou
在市场经济条件下,支配经济运行的基本规律是()。
A、 B、 C、 D、 A
下面是关于ARM处理器中模拟通道组件的叙述,其中错误的是()。
Wherearethespeakers?
最新回复
(
0
)