首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=,证明:存在ε∈(0,2),使得f"’(ε)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=,证明:存在ε∈(0,2),使得f"’(ε)=2.
admin
2019-09-23
70
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=
,证明:存在ε∈(0,2),使得f"’(ε)=2.
选项
答案
方法一: 先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=5/3,P(1)=f(1). 则[*] 令g(x)=f(x)-P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
),使得g"(d
1
)=g"(d
2
)=0,再由罗尔定理,存在ε∈(d
1
,d
2
)[*](0,2),使得g"’(ε)=0,而g"’(x)=f"’(x)-2,所以f"’(ε)=2. 方法二: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/K1A4777K
0
考研数学二
相关试题推荐
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx;(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
设f(x)在x=x0的某邻域内存在二阶导数,且.则存在点(x0,f(x0))的左、右邻域U与U﹢使得()
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
已知n阶方阵A满足矩阵方程A2一3A一2E=O.证明A可逆,并求出其逆矩阵A-1.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
设y=y(x)由方程ey+6xy+x2-1=0确定,求y"(0).
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.求曲线Γ的表达式.
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y(x)满足的微分方程和初始条件.
若z=f(x,y)可微,且f(x,y)=1,fx’(x,y)=x,则当x≠0时,fy’(x,y)=________.
随机试题
在有风险的情况下进行投资不仅要考虑资金的时间价值,而且要考虑投资的风险价值。下列指标属于投资的风险价值表现形式的有()。
下列哪些症状可能在精神分裂症中出现
用于评价慢性病的治疗效果的指标是反映某病的本身死亡的危害程度的指标是
目前诊断急性心肌梗死最好的确定标志物是()。
小王,20岁,意识清楚,因左腿胫骨骨折入院,根据奥瑞姆的自护理论,小王住院期间,护士提供的护理系统属于()。
JJF1069一2012《法定计量检定机构考核规范》中规定:“应根据规定的程序和日程对计量基(标)准、传递标准或工作标准以及标准物质进行核查,以保持其__________的可信度。”
某建筑公司总工程师窦某在完成单位工作过程中,利用自己业余时间编著了较为先进专业施工工法,则关于该作品的使用表述错误的是()。
区域保税的报核期限是______。
根据我国《宪法》的规定,全国人民代表大会常务委员会有权制定除基本法律以外的其他法律。()
一群艺术历史学家要确定某些近期发现的原稿的创作时间,每一幅画都是用几种不同的颜料创作的。这些历史学家请了一位化学家来测试这些画上6种颜料出现的时间。现已知这些颜料第一次被生产的时间,并且还知道某些颜料停止生产使用的时间,如下所示:颜料1:公元1100年开
最新回复
(
0
)